
Energieausweis für Wohngebäude

gemaß Onorm H 5055 und Richtlinie 2002/91/EG

GEBÄUDE			
Gebäudeart	Einfamilienhaus	Erbaut	2009
Gebäudezone	Wohnen	Katastralgemeinde	Neustift
Straße	Schulweg	KG-Nummer	81123
PLZ/Ort	6167 Neustift im Stubaital	Einlagezahl	
Eigentümer	Evi und Klaus Zaepernick	Grundstücksnummer	220/17

Berechnet mit ECOTECH Software, Version 3.0. Ein Produkt der ECOTECH Software GmbH; Snr: ECT-20080701XXXP51145

Energieausweis für Wohngebäude

gemaß Önorm H 5055 und Richtlinie 2002/91/EG

Old Oasterreichisches (natur für Sautechnik

GEBÄUDEDATEN Brutto-Grundfläche 261,30 m² beheiztes Brutto-Volumen 970,4 m³ charakteristische Länge (Ic) 1,53 m Kompaktheit (A/V) 0,65 1/m mittlerer U-Wert (Um) 0,20 W/m²K LEK-Wert 17

KLIMADATEN	
Klimaregion	ZA
Seehöhe	993 m
Heizgradtage	4710 Kd
Heiztage	269 d
Norm-Außentemperatur	-13,9 °C
mittlere Innentemperatur	20 °C

	Referenzklima		Standortklima		Anforderungen	
	zonenbezogen	spezifisch	zonenbezogen	spezifisch		
HWB	3696 kWh/a	14,15 kWh/m²a	4280 kWh/a	16,38 kWh/m²a	51,90 kWh/m²a	erfüllt
WWW B			3338 kWh/a	12,78 kWh/m²a		
HTEB-RH			-3467 kWh/a	-13,27 kWh/m²a		
HTEB-WW			-2172 kWh/a	-8,31 kWh/m²a		
HTEB			5586 kWh/a	21,38 kWh/m²a		
HEB			5013 kWh/a	19,18 kWh/m²a		
EEB			5013 kWh/a	19,18 kWh/m²a	122,94 kWh/m²a	erfüllt
PEB						
02			The Control of the last of the	ELECTRICAL PARTY.		

ERLÄUTERUNGEN

Heizwärmebedarf (HWB):

Heiztechnikenergiebedarf (HTEB): Endenergiebedarf (EEB):

Vom Heizsystem in die Räume abgegebenen Wärmemenge die benötigt wird, um während der Heizsalson bei einer standardisierten Nutzung eine Temperatur von 20°C zu halten.

Energiemenge die bei der Wärmeerzeugung und -verteilung verloren geht.

Energiemenge die dem Energiesystem des Gebäudes für Heizung und Warmwasserversorgung inklusive notwendiger Energiemengen für die Hilfsbetriebe bei einer typischen

Standardnutzung zugeführt werden muss.

Anhang zum Energieausweis gemäß OIB-Richtlinie 6 (8.1.2)

Verwendete Hilfsmittel und ÖNORMen:

Berechnungsverfahren: Monatsbilanzverfahren Klimadaten nach ÖNORM B 8110-5 Heizwärme- und Kühlbedarf nach ÖNORM B 8110-6 Der Energieausweis wurde erstellt mit ECOTECH Software, Version 3.0

Ermittlung der Eingabedaten:

Die Eingabedaten wurden anhand folgender Untelagen ermittelt: Vorabzug Einreichplan Plan Nr. e_001, Lageplan, EG, OG und e_002 Ansichten, Systemschnitt, teamk2

Haustechnische Angaben: mündliche Angaben durch Herrn Zaepernick Bauteilangaben: Datenblatt Angaben durch Holzbau Schafferer Holzbau GesmbH

Kommentare:

Der Energieausweis wurde im Auftrag von Herrn Zaepernick, Innerrain 6, 6167 Neustift im St. erstellt.

maximale U-Werte von Bauteile

Bauteil	U (max)	U (anf)	
Wände gegen Außenluft	0,12	0,35	erfüllt
Kleinflächige Wände gegen Außenluft	2:	0,7	
Trennwände zwischen Wohn- oder Betriebseinheiten		0,9	
Wände gegen unbeheizte, frostfrei zu haltende Gebäudeteile	*	0,6	
Wände gegen unbeheizte oder nicht ausgebaute Dachräume	₽	0,35	
Wände gegen andere Bauwerke an Grundstücks- bzw. Bauplatzgrenzen	Ħ.	0,5	
Erdberührende Wände und Fußböden	0,12	0,4	erfüllt
Fenster, Fenstertüren, verglaste oder unverglaste Türen gegen unbeheizt		2,5	
Fenster, Fenstertüren gegen Außenluft	0,79	1,4	erfüllt
Sonstige Fenster, Fenstertüren, verglaste oder unverglaste Außentüren	8,0	1,7	erfüllt
Dachflächenfenster gegen Außenluft	*	1,7	
Sonstige transparente Bauteile gegen Außenluft	9	2	
Decken gegen Außenluft, gegen Dachräume	0,11	0,2	erfüllt
Innendecken gegen unbeheizte Gebäudeteile	≅	0,4	
Innendecken gegen getrennte Wohn- und Betriebseinheiten	÷	0,9	

Anforderungen an wärmeübertragende Bauteile

Alle Anforderungen an die wärmeübertragenden Bauteile sind erfüllt.

Anforderungen an das energietechnische System

Alle Anforderungen an das energietechnische System sind erfüllt.

Sonstige Anforderungen

Alle sonstigen Anforderungen sind erfüllt.

ECOTECH Panorama Energie KG GEBÄUDERECHNER

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: **EFH Zaepernick** Datum: 10. November 2008 Blatt 1

Bauteil: AW1-EG

	Konstruktion			Nr	Bezeichnung	Dicke	Lambda	R-Wer
Außen	(Skizze)	Innen				[m]	[W/mK]	[m²*K/W
				100	Wärmeübergangswiderstand Aussen Rs.e		4	0,130
		₩.	1)	1	AGEPAN DWD protect N+F	0,015	0,090	
ACTION STATE		₹	3	2	I-Träger + Zellulose	0.030		2
	100			2a	Holz - Schnittholz Fichte rauh, lufttrocken	6 %	0,130	2
	100			2b	Holz - Schnittholz Fichte rauh, lufttrocken	6 %	0,130	
	1000		1)	2c	Zelluloseflocken	88 %	0,039	
		₩.	3	3	I-Träger + Zellulose	0,180	-	
	0.2 (0.1)			3a	Holz - Schnittholz Fichte rauh, lufttrocken	1 %	0,130	9
			3b	Holz - Schnittholz Fichte rauh, lufttrocken	1 %	0,130		
THE REAL PROPERTY.	以及《数 》主意		1)	3c	Zelluloseflocken	98 %	0,039	
0	S 11 (1)	₩.	3	4	I-Träger + Zellulose	0,030	-	
MEETING I				4a	Holz - Schnittholz Fichte rauh, lufttrocken	6 %	0,130	3
	Section 1977	[:		4b	Holz - Schnittholz Fichte rauh, lufttrocken	6 %	0.130	3
			1)	4c	Zelluloseflocken	88 %	0.039	
1		₩.		5	Holz - Massivholzplatte 3-Schicht	0,100	0,130	
0,420	m 🔾	₩	1	6	Installationsebene	0,050	1/2	0
	/			6a	Holz - Schnittholz Fichte rauh, lufttrocken	5 %	0,130	
				6b	Holz - Schnittholz Fichte rauh, lufttrocken	5 %	0,130	
				6c	Glaswolle 25 - 40 kg/m³	90 %	0.040	0
		₩.	3	7	Gipskartonplatte	0.015	0.210	
					Wärmeübergangswiderstand Innen Rs,i		-	0,130
					10	0.420		
			LEWe	ert IW	/m²K1	11 12 12 12 12		0,12

wird in der Berechnung des U-Wertes berücksichtigt

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert

0,35	W/m²K	0.12	W/m²K

Bauteil: AW2-OG

Verwendung: Außenwand mit Hinterlüftung Konstruktion Bezeichnung Dicke R-Wert Außen (Skizze) Innen [m] [W/mK] [m2*K/W] Wärmeübergangswiderstand Aussen Rs,e 0,130 AGEPAN DWD protect N+F 0,015 0,090 I-Träger + Zellulose 0,030 2a Holz - Schnittholz Fichte rauh, lufttrocken 6 % 0,130 2b Holz - Schnittholz Fichte rauh, lufttrocken 6 % 0,130 0,039 1) 2c Zelluloseflocken 88 % 3 I-Träger + Zellulose 0,280 3a Holz - Schnittholz Fichte rauh, lufttrocken 0,130 1 % 98 % 3b Holz - Schnittholz Fichte rauh, lufttrocken 0,130 1) 3c Zelluloseflocken 0,039 0,030 4 I-Träger + Zellulose 4a Holz - Schnittholz Fichte rauh, lufttrocken 6 % 0,130 4b Holz - Schnittholz Fichte rauh, lufttrocken 6 % 0,130 1) 4c Zelluloseflocken 88 % 0,039 5 Holz - Massivholzplatte 3-Schicht 0.100 0,130 0,520 m 6 Installationsebene 0,050 6a Holz - Schnittholz Fichte rauh, lufttrocken 5 % 0,130 6b Holz - Schnittholz Fichte rauh, lufttrocken 5 % 0,130 6c Glaswolle 25 - 40 kg/m3 90 % 0.040 7 Gipskartonplatte 0,015 0,210 Wärmeübergangswiderstand Innen Rs,i 0,130 0,520 U-Wert [W/m²K] 0.10

wird in der Berechnung des U-Wertes berücksichtigt

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

ECOTECH Panorama Energie KG GEBÄUDERECHNER

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: EFH Zaepernick

Datum: 10. November 2008

Blatt 2

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert

0.35	W/m²K

0 10	W/m²K
0.10	

Bauteil: FB1-Bodenplatte

Konstruktion			Nr	Bezeichnung	Dicke [m]	Lambda [W/mK]	R-Wert
			-	Wärmeübergangswiderstand Aussen Rs,i		-	0,170
	84		1	Parkett - Hartholzklebeparkett	0,010	0,150	0.067
	82		2	Zementestrich	0,070	1,330	0,053
	83	1)	3	Awakust	0,030	0,040	0,750
	8		4	Polystyrol EPS-Granulat zementgebunden <125 kg/m³	0,200	0,060	3,333
	8		5	Polystyrol XPS, CO2-geschäumt	0,080	0,041	1,951
The state of the s	82		-6	Polystyrol XPS, CO2-geschäumt	0,080	0,041	1,951
th	82		7	Stahlbeton	0,250	2,500	0,100
DECEMBER STREET				Wärmeübergangswiderstand Innen Rs,e		-	0,00
		_					
					-		
					0,720		8,37
		U-We	rt (W	/m²K]			0.12

wird in der Berechnung des U-Wertes berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert

1.40	W/m²K	0.10	W/m²K
1.40	VVIII IX	U.12	V V/III IX

¹⁾ Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

ECOTECH Panorama Energie KG GEBÄUDERECHNER

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: **EFH Zaepernick**

Datum: 10. November 2008

Blatt 3

Bauteil: DE1-Trenn

wird in der Berechnung des U-Wertes berücksichtigt

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

t

0,90 W	//m²K 0,25	W/m²K
--------	------------	-------

Bauteil: DA1

Konstruktion			Nr	Bezeichnung	Dicke [m]	Lambda [W/mK]	R-Wert [m2*K/W]
			- 2	Wärmeübergangswiderstand Aussen Rs.e			0,100
	M	1)	1	AGEPAN DWD protect N+F	0,015	0,090	
	₩.		2	Träger+ Zellulose	0,440	-	-
			2a	Holz - Schnittholz Fichte gehobelt, technisch getrocknet	6 %	0,130	
			2b	Holz - Schnittholz Fichte gehobelt, technisch getrocknet	6 %	0,130	
		1)	2c	Zelluloseflocken	88 %	0,039	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	52		3	OSB - Platte	0,022	0,130	32
the transfer of the transfer o	82		4	Installationsebene	0,030		5
			4a	Holz - Schnittholz Fichte gehobelt, technisch getrocknet	6 %	0,130	
			4b	Holz - Schnittholz Fichte gehobelt, technisch getrocknet	6 %	0,130	
		1)	4c	stehende Luftschicht vertikal nach oben 30mm	88 %	0,188	
/	53		5	Gipskartonplatte	0,015	0,210	
				Wärmeübergangswiderstand Innen Rs,i		-	0,100
1)					0,522		-
		U-We	rt [W	/m²K]			0,10

wird in der Berechnung des U-Wertes berücksichtigt

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert

0.20	W/m²K	0.10	W/m²K
0.40		V, 1V	

ECOTECH Panorama Energie KG GEBÄUDERECHNER

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: **EFH Zaepernick**

Datum: 10. November 2008

Blatt 4

Bauteil: DA2-Ter

wird in der Berechnung des U-Wertes berücksichtigt

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert

0,20	W/m²K	0.11	W/m²K
------	-------	------	-------

PEGTECH SEBÄUDERECHNER

Fensterübersicht (Bauteile) - kompakt

Projekt: EFH Zaepernick

Datum: 10. November 2008

Blatt 1

Legende: AB = Architekturlichte Breite, AH = Architekturlichte Hohe, Gesamtflache(außen), Ug = U-Wert des Glasses, Anteil Glas = Anteil der Glasses, Anteil Glas = Anteil der Glasses, Anteil Glas = Anteil der Glasses, Anteil der Rahmens H-Sprossen, Rahmen Anteil der Rahmens, H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Somwen H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen horizontalen horizon

Bezeichnung	AB	AH	Gesamt	_B O	Anteil	01	5	Uspr.	Rahmen	Rahmen	H-Spr.	H-Spr.	V-Spr.	V-Spr.	Fugen-	PS	Oges
)	<u>E</u>	Ξ	flache[m²]	[W/m²K]	Glas[%]	1		[W/m²K]	Breite[m]	Anteil%]	Anz.	Breite[m]	Anz.	Breite[m]	[ˈange[m]	[W/mK]	[W/m²K]
AF1	0.65	1.10	0.72	09.0	56.64	0.51	0.87	0.87	0.10	43,36	00'0	00'0	00'0	00'0	2,70	0,02	0,79
AF2	1,55	1.10	1,71	09'0	65,98	0,51	0,87	0,87	0,10	34,02	0,00	00'0	1,00	0,10	6,10	0,02	92'0
AF3	1,00	1,10	1.10	09'0	65,45	0,51	0,87	0,87	0,10	34,55	0,00	00'0	00'0	0,00	3,40	0,02	92'0
AF4	1.65	1.10	1,82	0.60	66,94	0.51	0,87	0.87	0,10	33,06	00'0	00'0	1,00	0,10	6,30	0,02	92'0
AF5	1.65	2.50	4.13	09'0	75,27	0.51	0,87	0.87	0,10	24,73	00'0	00'0	1,00	0,10	11,90	0,02	0,72
AT2	1.00	2.00	2.00	1	1	00'0	ı	1	ŀ	100,00	ı	ı	ŀ	1	00'0	00'0	0,80
AF13	1.65	2.50	4.13	09.0	80.85	0.51	0.87	0.87	0,10	19,15	00'0	00'0	0,00	0,10	7,50	0,02	69'0
AF6	1.00	2.50	2.50	09.0	73.60	0.51	0.87	0.87	0,10	26,40	00'0	00'0	00'0	0,10	6,20	0,02	0,72
AF7	2.55	2.50	6.38	09'0	81.18	0,51	0,87	0,87	0,10	18,82	00'0	00'0	1,00	0,10	13,70	0,02	69'0
AF8	3.80	2.50	9.50	09.0	84.74	0.51	0.87	0.87	0,10	15,26	0,00	00'0	1,00	0,10	16,20	0,02	0,68
AF10	2.55	2.50	6.38	09'0	84.78	0.51	0.87	0,87	0,10	15,22	00'0	00'0	00'0	0,10	9,30	0,02	0,67
AF9	1.25	2.50	3,13	09'0	77,28	0.51	0.87	0.87	0,10	22,72	00'0	00'0	0,00	0,10	6,70	0,02	0,70
AF11	0.55	2.00	1.10	09.0	57.27	0.51	0.87	0.87	0,10	42,73	00'0	00'0	0,0	0,10	4,30	0,02	0,79
AT1	1.20	2.00	2.40		1	0.00	1	I	1	100,00	1	ı	ı	I	00'0	0,00	0,80
AF12	5	1 40	1.40	09.0	68.57	0.51	0.87	0.87	0.10	31,43	00'0	0.00	00.0	0,10	4,00	0,02	0,74

GEBÄUDERECHNER

Baukörper-Dokumentation - kompakt

Projekt: **EFH Zaepernick** Baukörper: **EFH Zaepernick**

Blatt 1

Datum: 10. November 2008

Beheizte Hülle

Bezeichnung	Långe	Breite	Höhe	Geschoße	Gebaudeart	Volumen [m²]	BGF [m-]	beh. Holle[m ²]	[1/m]
EFH Zaepernick	14.20	9.60	7,34	2	1.1 vollbeheizte Gebäude	970,41	261,30	632,58	0,65

Außen-Wände

Bezeichnung	Bauteil	U-Wert	Anzahl	Breite	Hohe	Flache	Fenster [m²]	Toren T	Abzug Zuschi [m²n	Flache	Ausricht.	Zustand
n01	AW1-EG	0,12	1,00	14.20	3,42	48,56	-5.34	00'0	00'0	43,23	45° / 90°	\perp
n02	AWZ-OG	0.10	1.00	14.40	3.72	53.57	-12,38	00'0	00'0	41,19	45° / 90°	
001	AW1-EG	0.12	1.00	9,60	3,42	32,83	-6,63	-2,00	00'0	24,21	135" / 90"	warm / außen
002	AW2-0G	0,10	1,00	9,70	3,91	37,93	-2,50	00'0	00'0	35,43	135° / 90°	ш
s01	AW1-EG	0.12	1,00	14,20	3,42	48,56	-22,25	00'0	00'0	26,31	225° / 90°	
s02	AW2-OG	0,10	1,00	14,40	4,37	62,93	-12,63	00'0	00'0	50,30	225° / 90°	
w01	AW1-EG	0,12	1,00	9,60	3,42	32,83	-1,10	-2,40	00'0	29,33	315" / 90"	_
w02	AW2-OG	0,10	1,00	9,70	3,91	37,93	4,53	00'0	00'0	33,40	315° / 90°	
SUMMEN						355,14	-67,34	4,40	00'0	283,41		

Decken

Bezeichnung	Bauteil	U-Wert	Anzahi	Breite [m]	Höhe	Flache Brutto[m*]	Fenster [m ²]	Turen	Abzug Zuschi [m²]	Flache Netto[m-]	Ausricht. Neigung	Zustand
DE01-Trenn	DE1-Trenn	0.25	1.00	9,60	14.20	124,98	00'0	00'0	-11,34	124,98	0,00	warm / warm
SUMMEN						124,98	00'0	00'0	-11,34	124,98		

Dach-Flächen

Bezeichnung	Bautell	U-Wert [W/m*K]	Anzahl	Breite [m]	Höhe [m]	Flache Brutto[m-]	Fenster [m ²]	Türen	Abzug Zuschl.[m ⁻]	Flache Netto[m-]	Ausricht. Neigung	Zustand
DA01	DA1	0,10	1,00	14,40	4,10	59,04	00'0	00'0	00'0	59,04	-/0	warm / außen
DA02	DA1	0,10	1,00	5,70	14,40	70,74	00'0	00'0	-11,34	70,74	°0/-	warm / außen
DA03-Ter	DA2-Ter	0.11	1.00	4.05	2.80	11.34	00.00	00.00	0.00	11,34	.0/-	warm / außen

Berechnet mit ECOTECH Software, Version 3.0. Ein Produkt der ECOTECH Software GmbH; Snr. ECT-20060701XXXP61145

Baukörper-Dokumentation - kompakt

Projekt: **EFH Zaepernick** Baukörper: **EFH Zaepernick**

eichnung	Bautell	Dł-wert	Anzahi	Breite [m]	Tohe Tipe	Flache Brutto[m²]	Fenster [m ²]	Türen	Abzug Zuschl.[m²]	Fläche Netto[m²]	Ausricht. Neigung	Zustand
AMEN						141.12	00.00	00.00	-11.34	141.12		

Blatt 2

Datum: 10. November 2008

Erdberührende Fußböden

Bezeichnung	Bautell	U-Wert IW/m³K	Anzahl	Breite	Hohe [m]	Fläche Brutto[m*]	Fenster [m*]	Tûren [m²]	Abzug Zuschl.[m²]	Fische Netto[m-]	Ausricht. Neigung	Zustand
Bodenplatte	FB1-Bodenplatte	0,12	1,00	14,20	9,60	136,32	0,00	00'0	00'0	136,32	-/0	warm / außen
SUMMEN						136,32	00'0	00'0	00'0	136,32		

Volumen-Berechnung

Bezeichnung	Zustand	Geometrietyp	Volumen
V01-EG	Beheiztes Volumen	Kubus	466,21
V02-0G-1	Beheiztes Volumen	Kubus	219,63
V03-OG-2	Beheiztes Volumen	Kubus	332,42
V04-OG-3	Beheiztes Volumen	Kubus	-47,85
SIMME			970.41

Heizung

Wärmeabgabe

Regelung Abgabesystem Verbrauchsermittlung Einzelraumregelung mit Thermostatventilen

Flächenheizung (35/28 °C)

Individuelle Verbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Wärmeverteilung

Lage der Verteillleitungen
Lage der Steigleitungen
Lage der Anbindeleitungen
Dämmung der Verteillleitungen
Dämmung der Steigleitungen
Dämmung der Anbindeleitungen
Armaturen der Verteillleitungen
Armaturen der Steigleitungen
Armaturen der Verteillleitungen

100% beheizt
100% beheizt
3/3 Durchmesser
3/3 Durchmesser
2/3 Durchmesser
Armaturen gedämmt
Armaturen gedämmt
Armaturen gedämmt
17,53 (D

100% beheizt

Länge der Verteillleitungen [m] Länge der Steigleitungen [m] Länge der Anbindeleitungen [m] 17,53 (Default) 20,90 (Default) 73,16 (Default)

Wärmespeicherung

Baujahr des Speichers Art des Speichers Basisanschluss E-Patrone HeizregisterSolar Speicher In Beheizt ab 1994

Lastausgleichsspeicher Heizkessel Anschlüsse gedämmt

Anschluß gedämmt
Anschluß nicht vorhanden
Ja

ја 224.00

(Default)

V_{H,W8} Q_{b,W9}

2,68

(Default)

Wärmebereitstellung (Zentral)

Bereitstellung

Monovalente Wärmepumpe

Sole / Wasser W35, tiefverlegt

Warmepumpe

Art der Wärmepumpe Baujahr Betriebsweise

Heizung monovalent -1,00 6,00 1,50

ab 2005

θ_{bp} P_{WP,KN} P_{WP,HE} Modulierend Arbeitszahl

Ja 3,20

Warmwasser

Wärmeabgabe

Verbrauchsermittlung Art der Armaturen

Individuelle Verbrauchsermittlung und -abrechnung (Fixwert)

Zweigriffarmaturen (Fixwert)

Wärmeverteilung

Lage der Verteillleitungen Lage der Steigleitungen Dämmung der Verteillleitungen Dämmung der Steigleitungen Armaturen der Verteillleitungen Armaturen der Steigleitungen

100% beheizt 100% beheizt 3/3 Durchmesser 3/3 Durchmesser Armaturen gedämmt Armaturen gedämmt

Nein

Zirkulation Stichleitungen

Länge der Verteillleitungen [m] Länge der Steigleitungen [m] Länge der Stichleitungen [m] Zirkulation Verteilleitungen [m] Zirkulation Steigleitungen [m]

Kunststoff 9,72 (Default) 10,45 (Default) 41,81 (Default) 0,00 (Default) 0,00 (Default)

Wärmespeicherung

Baujahr des Speichers Art des Speichers Basisanschluss

ab 1994 Indirekt beheizter Speicher (Solar, Wärmepumpe) ab 1994

E-Patrone HeizregisterSolar Speicher In Beheizt Anschlüsse gedämmt Anschluß gedämmt Anschluß nicht vorhanden Ja

250,00 Freie Eingabe (Default = 522,60) 2,22 (Default) 45.00 (Default)

V_{TW,W8} q_{b,ws} ⊖ _{TW,WS,m}

Wärmebereitstellung (Zentral)

Bereitstellung

Warmwasserbereitung mit Heizung kombiniert

Solaranlage

Keine Solaranlage vorhanden

RLT

Keine RLT-Anlage (Fensterlüftung)

ECOTECH Panorama Energie KG GEBAUDERECHNER

Optionen Heizwärmebedarf gemäß OIB-Richtline 6

Ргојект: Егн Zaepe	rnick		Datum: 10. Novemb	er 2008 BI	latt
Allgemeine Einstel	llungen: ☑ Neubau	☐ Sanierung	☐ Bestand		
Bauweise	✓ leicht	mittel	☐ schwer	☐ sehr schwe	er
Wärmebrückenzuschlag	✓ vereinfacht	☐ detailliert It. Baukč	orpereingabe		
Keller	✓ Keller ungedämmt	☐ Keller gedämmt (\v Fußböden unterso von 0.35 [W/(m²K)	chreiten U-Wert		
Verschattung	✓ vereinfacht	☐ detailliert lt. Baukč	órpereingabe		
Lüftung: Art der Lüftung	mechanische Lüftung				
Wärmetauscher	Eingabe des Wärmebe	reitstellungsgrads It. Prü	fzeugnis unter Berücksichtigung	der Abschläge [%] =	85 %
Falschluftrate	< 0.6facher Luftwechse	el			
Erdwärmetauscher	nicht berücksichtigt				
Transparente Wärr Transparente Wärmedämmung	medämmung: nicht berücksichtigt				
Gebäudetyp / Inner Gebäudetyp Innentemperatur [°C] Innere Gewinne [W/m²]	re Gewinne: Einfamilienhaus 20 3,75	(Default) (Default)			
Flächenheizung: Flächenheizung Vorlauftemperatur bei Normalaußentemperatur [°C]	berücksichtigt 35				
Rücklauftemperatur bei Normalaußentemperatur [°C]	28				
- -	Bauteil		Flächenheizung		
	AW1-EG				
	AW2-OG FB1-Bodenplatte				
	DA1		∑		
	DA2-Ter		ä		
	DE1-Trenn		$\overline{m{arphi}}$		