gemäß den §§ 16 ff. der Energieeinsparverordnung (EnEV) vom ¹ 18.11.2013

Registriernummer ² BY-2022-003922384

Gültig bis: 16.01.2032

(oder: "Registriernummer wurde beantragt am ...")

Gebäude										
Gebäudetyp	Mehrfamilienhaus, freistehend									
Adresse	Würzburger Straße 25, 25a / Lehmusstraße 2	90766 Fürth								
Gebäudeteil	Teil B									
Baujahr Gebäude ³	2021									
Baujahr Wärmeerzeuger ^{3, 4}	2021		Gebäudefoto (freiwillig)							
Anzahl Wohnungen	34									
Gebäudenutzfläche (A _N)	3016 m² ☐ nach § 19 EnEV aus der Wo	hnfläche ermittelt								
Wesentliche Energieträger für Heizung und Warmwasser³	Erdgas H									
Erneuerbare Energien	Art:	Verwendung:								
Art der Lüftung/Kühlung □ Fensterlüftung □ Lüftungsanlage mit Wärmerückgewinnung □ Kühlung □ Kühlung										
Anlass der Ausstellung des Energieausweises	✓ Neubau☐ Modern☐ Vermietung/Verkauf☐ Ändern	nisierung ung/Erweiterung)	☐ Sonstiges (freiwillig)							
Hinweise zu den Angaben ü	ber die energetische Qual	ität des Gek	bäudes							
Hinweise zu den Angaben über die energetische Qualität des Gebäudes Die energetische Qualität eines Gebäudes kann durch die Berechnung des Energiebedarfs unter Annahme von standardisierten Randbedingungen oder durch die Auswertung des Energieverbrauchs ermittelt werden. Als Bezugsfläche dient die energetische Gebäudenutzfläche nach der EnEV, die sich in der Regel von den allgemeinen Wohnflächenangaben unterscheidet. Die angegebenen Vergleichswerte sollen überschlägige Vergleiche ermöglichen (Erläuterungen - siehe Seite 5). Teil des Energieausweises sind die Modernisierungsempfehlungen (Seite 4).										
	er Grundlage von Berechnungen des gebnisse sind auf Seite 2 dargestellt.									
	er Grundlage von Auswertungen des Ergebnisse sind auf Seite 3 dargest		uchs erstellt							
Datenerhebung Bedarf/Verbrauch durc	ch 🗵 Eigentümer		□ Aussteller							

Hinweise zur Verwendung des Energieausweises

Der Energieausweis dient lediglich der Information. Die Angaben im Energieausweis beziehen sich auf das gesamte Gebäude oder den oben bezeichneten Gebäudeteil. Der Energieausweis ist lediglich dafür gedacht, einen überschlägigen Vergleich von Gebäuden zu ermöglichen.

Dem Energieausweis sind zusätzliche Informationen zur energetischen Qualität beigefügt (freiwillige Angabe).

Aussteller

Lang Ingenieure GmbH & Co.KG sb 17/6786 Pretzfelder Straße 24 91320 Ebermannstadt

Datenerhebung Bedarf/Verbrauch durch

17.01.2022

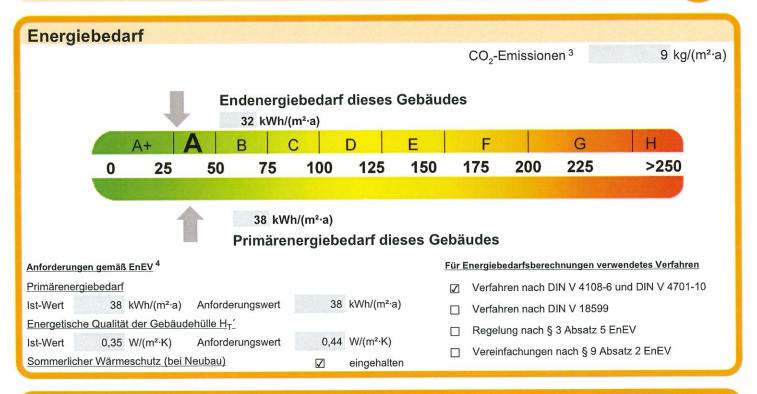
Ausstellungsdatum

Johannes Lang M. Sc. Energia de Ausstellers
White schrift des Ausstellers
White schrift

¹ Datum der angewendeten EnEV, gegebenenfalls angewendeten Änderungsverordnung zur EnEV Registriernummer (§ 17 Absatz 4 Satz 4 und 5 EnEV) ist das Datum der Antragstellung einzutragen; die Registriernummer ist nach deren Eingang nachträglich einzusetzen.

³ Mehrfachangaben möglich

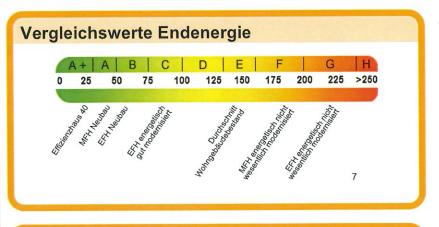
⁴ bei Wärmenetzen Baujahr der Übergabestation


gemäß den §§ 16 ff. der Energieeinsparverordnung (EnEV) vom ¹ 18.11.2013

Berechneter Energiebedarf des Gebäudes

Registriernummer ² BY-2022-003922384

(oder: "Registriernummer wurde beantragt am ...")



Endenergiebedarf dieses Gebäudes [Pflichtangabe in Immobilienanzeigen]

32 kWh/(m²·a)

Angaben zum EEWärmeG 5 Nutzung erneuerbarer Energien zur Deckung des Wärme- und Kältebedarfs auf Grund des Erneuerbare-Energien-Wärmegesetzes (EEWärmeG) % Solaranlage Warmwasser 15 % Art: Deckungsanteil: % Ersatzmaßnahmen 6 Die Anforderungen des EEWärmeG werden durch die Ersatzmaßnahme nach § 7 Absatz 1 Nummer 2 EEWärmeG Die nach § 7 Absatz 1 Nummer 2 EEWärmeG verschärften Anforderungswerte der EnEV sind eingehalten. Die in Verbindung mit § 8 EEWärmeG um % verschärften Anforderungswerte der EnEV sind eingehalten. Verschärfter Anforderungswert Primärenergiebedarf: kWh/(m²·a) Verschärfter Anforderungswert für die energetische Qualität der Gebäudehülle H_T': W/(m²·K)

Erläuterungen zum Berechnungsverfahren

Die Energieeinsparverordnung lässt für die Berechnung des Energiebedarfs unterschiedliche Verfahren zu, die im Einzelfall zu unterschiedlichen Ergebnissen führen können. Insbesondere wegen standardisierter Randbedingungen erlauben die angegebenen Werte keine Rückschlüsse auf den tatsächlichen Energieverbrauch. Die ausgewiesenen Bedarfswerte der Skala sind spezifische Werte nach der EnEV pro Quadratmeter Gebäudenutzfläche (A_N), die im Allgemeinen größer ist als die Wohnfläche des Gebäudes.

¹ siehe Fußnote 1 auf Seite 1 des Energieausweises ² siehe Fußnote 2 auf Seite 1 des Energieausweises ³ freiwillige Angabe ⁴ nur bei Neubau sowie bei Modernisierung im Fall des § 16 Absatz 1 Satz 3 EnEV ⁵ nur bei Neubau ⁶ nur bei Neubau im Fall der Anwendung von § 7 Absatz 1 Nummer 2 EEWärmeG ⁷ EFH: Einfamilienhaus, MFH: Mehrfamilienhaus

gemäß den §§ 16 ff. der Energieeinsparverordnung (EnEV) vom ¹ 18.11.2013

Erfasster Energieverbrauch des Gebäudes

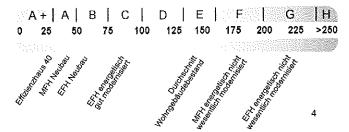
Registriernummer ² BY-2022-003922384

(oder: "Registriernummer wurde beantragt am ...")

3

Energieverbrauch

Endenergieverbrauch dieses Gebäudes


[Pflichtangabe in Immobilienanzeigen]

kWh/(m²-a)

Verbrauchserfassung - Heizung und Warmwasser

Zeitraum ı		Energieträger ³	Primär- energie- faktor	Energieverbrauch [kWh]	Anteil Warmwasser	Anteil Heizung [kWh]	Klima- faktor
von	bis		faktor	[[\\V\11]	[kWh]	į į į į į į į į į į į į į į į į į į į	
			!				

Vergleichswerte Endenergie

Die modellhaft ermittelten Vergleichswerte beziehen sich auf Gebäude, in denen die Wärme für Heizung und Warmwasser durch Heizkessel im Gebäude bereitgestellt wird.

Soll ein Energieverbrauch eines mit Fern- oder Nahwärme beheizten Gebäudes verglichen werden, ist zu beachten, dass hier normalerweise ein um 15 bis 30 % geringerer Energieverbrauch als bei vergleichbaren Gebäuden mit Kesselheizung zu erwarten ist.

Erläuterungen zum Verfahren

Das Verfahren zur Ermittlung des Energieverbrauchs ist durch die Energiesparverordnung vorgegeben. Die Werte der Skala sind spezifische Werte pro Quadratmeter Gebäudenutzfläche (A_N) nach der Energieeinsparverordnung, die im Allgemeinen größer ist als die Wohnfläche des Gebäudes. Der tatsächliche Energieverbrauch einer Wohnung oder eines Gebäudes weicht insbesondere wegen des Witterungseinflusses und sich ändernden Nutzerverhaltens vom angegebenen Energieverbrauch ab.

gemäß den §§ 16 ff. der Energieeinsparverordnung (EnEV) vom ¹ 18.11.2013

Empfehlungen des Ausstellers

Registriernummer ² BY-2

BY-2022-003922384

(oder: "Registriernummer wurde beantragt am ...")

Emp	Empfehlungen zur kostengünstigen Modernisierung										
Maßna	Maßnahmen zur kostengünstigen Verbesserung der Energieeffizienz sind ☐ möglich ☑ nicht möglich										
Empfohlene Modernisierungsmaßnahmen											
				empfohler		(freiwillige A	Angaben)				
Nr.	Bau- oder Anlagenteile	Maßnahme einzelr	nbeschreibung in nen Schritten	in Zusammenhang mit größerer Modernisierung	als Einzel- maß- nahme	geschätzte Amortisa- tionszeit	geschätzte Kosten pro eingesparte Kilowatt- stunde Endenergie				
	weitere Empfehlunger										
Hinwe	eis: Modernisierungs Sie sind nur kurz	empfehlungen für d gefasste Hinweise	as Gebäude dienen ledigli und kein Ersatz für eine E	ch der Informa nergieberatung	tion. J.						
Gena	auere Angaben zu den l erhältlich bei/unter:	Empfehlungen	Angabe hier nicht releva	nt							
Era	änzende Erläutei	ungen zu den	Angaben im Energ	gieausweis	(Ang	gaben freiwillig)					
9		3									

gemäß den §§ 16 ff. der Energieeinsparverordnung (EnEV) vom ¹ 18.11.2013

Erläuterungen

Angabe Gebäudeteil - Seite 1

Bei Wohngebäuden, die zu einem nicht unerheblichen Anteil zu anderen als Wohnzwecken genutzt werden, ist die Ausstellung des Energieausweises gemäß dem Muster nach Anlage 6 auf den Gebäudeteil zu beschränken, der getrennt als Wohngebäude zu behandeln ist (siehe im Einzelnen § 22 EnEV). Dies wird im Energieausweis durch die Angabe "Gebäudeteil" deutlich gemacht.

Erneuerbare Energien - Seite 1

Hier wird darüber informiert, wofür und in welcher Art erneuerbare Energien genutzt werden. Bei Neubauten enthält Seite 2 (Angaben zum EEWärmeG) dazu weitere Angaben.

Energiebedarf - Seite 2

Der Energiebedarf wird hier durch den Jahres-Primärenergiebedarf und den Endenergiebedarf dargestellt. Diese Angaben werden rechnerisch ermittelt. Die angegebenen Werte werden auf der Grundlage der Bauunterlagen bzw. gebäudebezogener Daten und unter Annahme von standardisierten Randbedingungen (z.B. standardisierte Klimadaten, definiertes Nutzerverhalten, standardisierte Innentemperatur und innere Wärmegewinne usw.) berechnet. So lässt sich die energetische Qualität des Gebäudes unabhängig vom Nutzerverhalten und von der Wetterlagbeurteilen. Insbesondere wegen der standardisierten Randbedingungen erlauben die angegebenen Werte keine Rückschlüsse auf den tatsächlichen Energieverbrauch.

Primärenergiebedarf - Seite 2

Der Primärenergiebedarf bildet die Energieeffizienz des Gebäudes ab. Er berücksichtigt neben der Endenergie auch die so genannte "Vorkette" (Erkundung, Gewinnung, Verteilung, Umwandlung) der jeweils eingesetzten Energieträger (z.B. Heizöl, Gas, Strom, erneuerbare Energien etc.). Ein kleiner Wert signalisiert einen geringen Bedarf und damit eine hohe Energieeffizienz sowie eine die Ressourcen und die Umwelt schonende Energienutzung. Zusätzlich können die mit dem Energiebedarf verbundenen CO₂-Emissionen des Gebäudes freiwillig angegeben werden.

Energetische Qualität der Gebäudehülle - Seite 2

Angegeben ist der spezifische, auf die wärmeübertragende Umfassungsfläche bezogene Transmissionswärmeverlust (Formelzeichen in der EnEV: $H_{\rm T}$). Er beschreibt die durchschnittliche energetische Qualität aller wärmeübertragenden Umfassungsflächen (Außenwände, Decken, Fenster etc.) eines Gebäudes. Ein kleiner Wert signalisiert einen guten baulichen Wärmeschutz. Außerdem stellt die EnEV Anforderungen an den sommerlichen Wärmeschutz (Schutz vor Überhitzung) eines Gebäudes.

Endenergiebedarf - Seite 2

Der Endenergiebedarf gibt die nach technischen Regeln berechnete, jährlich benötigte Energiemenge für Heizung, Lüftung und Warmwasserbereitung an. Er wird unter Standardklima- und Standardnutzungsbedingungen errechnet und ist ein Indikator für die Energieeffizienz eines Gebäudes und seiner Anlagentechnik. Der Endenergiebedarf ist die Energiemenge, die dem Gebäude unter der Annahme von standardisierten Bedingungen und unter Berücksichtigung der Energieverluste zugeführt werden muss, damit die standardisierte Innentemperatur, der Warmwasserbedarf und die notwendige Lüftung sichergestellt werden können. Ein kleiner Wert signalisiert einen geringen Bedarf und damit eine hohe Energieeffizienz.

Angaben zum EEWärmeG - Seite 2

Nach dem EEWärmeG müssen Neubauten in bestimmtem Umfang erneuerbare Energien zur Deckung des Wärme- und Kältebedarfs nutzen. In dem Feld "Angaben zum EEWärmeG" sind die Art der eingesetzten erneuerbaren Energien und der prozentuale Anteil der Pflichterfüllung abzulesen. Das Feld "Ersatzmaßnahmen" wird ausgefüllt, wenn die Anforderungen des EEWärmeG teilweise oder vollständig durch Maßnahmen zur Einsparung von Energie erfüllt werden. Die Angaben dienen gegenüber der zuständigen Behörde als Nachweis des Umfangs der Pflichterfüllung durch die Ersatzmaßnahme und der Einhaltung der für das Gebäude geltenden verschärften Anforderungswerte der EnEV.

Endenergieverbrauch - Seite 3

Der Endenergieverbrauch wird für das Gebäude auf der Basis der Abrechnungen von Heiz- und Warmwasserkosten nach der Heizkostenverordnung oder auf Grund anderer geeigneter Verbrauchsdaten ermittelt. Dabei werden die Energieverbrauchsdaten des gesamten Gebäudes und nicht der einzelnen Wohneinheiten zugrunde gelegt. Der erfasste Energieverbrauch für die Heizung wird anhand der konkreten örtlichen Wetterdaten und mithilfe von Klimafaktoren auf einen deutschlandweiten Mittelwert umgerechnet. So führt beispielsweise ein hoher Verbrauch in einem einzelnen harten Winter nicht zu einer schlechteren Beurteilung des Gebäudes. Der Endenergieverbrauch gibt Hinweise auf die energetische Qualität des Gebäudes und seiner Heizungsanlage. Ein kleiner Wert signalisiert einen geringen Verbrauch. Ein Rückschluss auf den künftig zu erwartenden Verbrauch ist jedoch nicht möglich; insbesondere können die Verbrauchsdaten einzelner Wohneinheiten stark differieren, weil sie von der Lage der Wohneinheiten im Gebäude, von der jeweiligen Nutzung und dem individuellen Verhalten der Bewohner abhängen. Im Fall längerer Leerstände wird hierfür ein pauschaler Zuschlag rechnerisch bestimmt und in die Verbrauchserfassung einbezogen. Im Interesse der Vergleichbarkeit wird bei dezentralen, in der Regel elektrisch betriebenen Warmwasseranlagen der typische Verbrauch über eine Pauschale berücksichtigt: Gleiches gilt für den Verbrauch von eventuell vorhandenen Anlagen zur Raumkühlung. Ob und inwieweit die genannten Pauschalen in die Erfassung eingegangen sind, ist der Tabelle "Verbrauchserfassung" zu entnehmen.

Primärenergieverbrauch - Seite 3

Der Primärenergieverbrauch geht aus dem für das Gebäude ermittelten Endenergieverbrauch hervor. Wie der Primärenergiebedarf wird er mithilfe von Umrechnungsfaktoren ermittelt, die die Vorkette der jeweils eingesetzten Energieträger berücksichtigen.

Pflichtangaben für Immobilienanzeigen - Seite 2 und 3

Nach der EnEV besteht die Pflicht, in Immobilienanzeigen die in § 16a Absatz 1 genannten Angaben zu machen. Die dafür erforderlichen Angaben sind dem Energieausweis zu entnehmen, je nach Ausweisart der Seite 2 oder 3.

Vergleichswerte - Seite 2 und 3

Die Vergleichswerte auf Endenergieebene sind modellhaft ermittelte Werte und sollen lediglich Anhaltspunkte für grobe Vergleiche der Werte dieses Gebäudes mit den Vergleichswerten anderer Gebäude sein. Es sind Bereiche angegeben, innerhalb derer ungefähr die Werte für die einzelnen Vergleichskategorien liegen.

¹ siehe Fußnote 1 auf Seite 1 des Energieausweises

Erklärung zur Einhaltung des Erneuerbare-Energien-Wärmegesetz (EEWärmeG)

für das Wohngebäude

Straße	Würzburger Straße 25	Wohneinheiten	34
Ort	90766 Fürth	Gebäudenutzfläche (A _N)	3016.8 m ²

in Einhaltung!) das EEWärmaG wird arfüllt durch:

Die	e Einhaltung" des EEWarmeG wird erfullt durch:		
		Anteil des Bedarfs in %	EEWärmeG Anteil in %
	Anforderungswerte für die Primärenergie und dem Transmissionswärmeverlust werden jeweils um mindestens % unterschritten (Q", um 0.5 % H', um 21.0 %) Q", lst= 37.9 kWh/m² EnEV= 38.1 kWh/m² EnEV %= 38.1 kWh/m² H', lst= 0.349 W/m²K EnEV= 0.442 W/m²K EnEV %= 0.442 W/m²K.	0.5	3.0
\checkmark	Einsatz einer solarthermischen Anlage "SolarKeymark" mit 90.5 m^2 , nach EEWärmeG mindestens 90.5m^2 (0.03 m^2 Solarfläche pro m^2 Nutzfläche), oder		100.0
	Einsatz einer Solaranlage die mindestens 15% des Wärme-/Kälteenergiebedarfs deckt. Der Solarkollektor muss "SolarKeymark" zertifiziert sein.		
	Einsatz einer Wärmepumpe die mindestens 50% des Wärme-/Kälteenergiebedarfs deckt und der Anforderung bezüglich der Jahresarbeitszahl dem Absatz III des Anhangs des EEWärme entspricht. Das Wärmepumpensystem muss mit einem Wärmestromzähler ausgestattet sein (Ausnahme Wasser/Wasser und Erdreich/Wasser WP mit Heizungsvorlauftemperatur <35°C).		
	Nah- und Fernwärmenetz aus erneuerbaren Energien (wesentlicher Anteil).		<u> </u>
	Einsatz einer KWK, die mindestens 50% des Wärme-/Kälteenergiebedarfs deckt.		
	Einsatz von Abwärme, die mindestens 50% des Wärme-/Kälteenergiebedarfs deckt.		
	Einsatz von Biomassekessel, der mindestens 50% des Wärme-/Kälteenergiebedarfs deckt und ein besonders effizienten Kesselwirkungsgrad besitzt (86% bzw. 88%), oder Deckungsgrad 100% bei einfachen Kesseln.		
	Einsatz von Biogas in einer KWK Anlage, die mindestens 30% des Wärme-/Kälteenergiebedarfs deckt.		
	Einsatz von Bioöl in einem Brennwertkessel, der mindestens 50% des Wärme-/Kälte- energiebedarfs deckt.		

EEWärmeG Summen in %.

103.0

Aussteller

sb 17/6786

Lang Ingenieure GmbH & Co.KG

Pretzfelder Straße 24

91320 Ebermannstadt

17.01.2022 Datum

Telefon: 09194/7350 0 Fax: 09094/735040

17.Jan 2022 14:02:33

INGENIEURE ----

Energieeinsparnachweis

nach der Energieeinsparverordnung EnEV 2014 mit Verschärfung ab 2016

Bundesratsbeschluss vom 11.10.2013

"Wohngebäude"

öffentlich rechtlicher Nachweis

nach dem "Monatsbilanzverfahren" der DIN V 4108-6:2003-06

und Berechnung der Anlagentechnik nach DIN V 4701-10:2003-08

Oktober 2017

Baujahr 2021

Flurstücknummer: 1386

Projekt Kurzbeschreibung: Neubau ETW - Teil B

Bauvorhaben

: Neubau einer Eigentumswohnanlage mit Tiefgarage

Bearbeiter

: sb_17/6786

Objektstandort

Straße/Hausnr.

: Würzburger Straße 25

Plz/Ort

: 90766 Fürth

Gemarkung

Hauseigentümer/Bauherr

: Schultheiß Projektentwicklung AG

Name/Firma Straße/Hausnr.

Großreuther Straße 70

Plz/Ort

: 90425 Nürnberg

Telefon / Fax

angenommenen.

Bei den errechneten Energieverbrauchswerten handelt es sich um theoretische Werte, die durch Klima- und Nutzereinflüsse erheblich von den tatsächlichen Werten abweichen können

Nach EnEV nach DIN 18599 sind im Wärmeschutznachweis Annahmen zu treffen die bei Erstellung dieses Nachweises noch nicht, bzw. nur teilweise vorlagen. Dieser Wärmeschutznachweis ist nur zutreffend, wenn vom Haustechniker, Architekten und Bauherrn die Annahmen zur Heizung, Wasser, Installationen, Beleuchtung, usw. geprüft

Die detallierten Wärmebrücken wurden pauschal mit Uwb=0,050 W/m²K

werden und diese der Ausführung zustimmen und umsetzen.

Der sommerliche Wärmeschutz ist durch eine außenliegende Sonnenschutzvorrichtung (Jalousien, Rolläden, Fensterläden, etc. - komplett geschlossen Fc = 0,1) gewährleistet!

Folgende Einstellungen wurden vorgenommen

- Außenwand: KS WD 180 WLG 035
- Innenwand: KS WD 100 WLG 035
- Gaubenwand: Holzleichtbau
- Fenster mit Gesamt U-Wert 0,9W/m²K, Haustür U-Wert 1,2W/m²K, Kellertür mit U-Wert 2,0W/m2K
- Kellerwände/Wände gegen unbeheizte Räume / TG: Beton mit WD120 WLG035
- Decke gegen Müll: Beton mit WD100 WLG035 unten + WD70 WLG035 + TSD20 WLG040 oben
- Boden Müll gegen KG warm: Beton mit WD70 WLG035 + TSD20 WLG040 oben
- Decke gegen KG: Beton mit WD70 WLG035 + TSD20 WLG040 oben
- Decke gegen TG: Beton mit WD100 WLG035 unten + WD70 WLG035 + TSD20 WLG040 oben
- 10) Bodenplatte im Treppenraum UG: Beton mit WD100 WLG040 unten + TSD20 WLG 040
- 11) Dach: Sparren mit WD200 WLG 035
- 12) Dach Gauben: Sparren mit WD160 WLG 035
- 13) Flachdach/Terrasse: Beton mit WD150 WLG 035

CHE INGENIEUREKAN Datum und Unterschrift, ggf. Stempel/Firmenzeichen Lang Name, Anschrift und Funktion des Ausstellers sb_17/6786 Lang Ingenieure GmbH & Co.KG BaylkaBau Pretzfelder Straße 24 91320 Ebermannstadt Energieberater 17.Jan 2022 Wohngebäude 2/JYN3770 230 73

Neubau ETW - Teil B

17.Jan 2022 14:02:33

14) Heizung +Trinkwasserversorgung: Gas-Brennwert-Kessel
15) Solaranlage: mindestens 54,7 m² zur Trinkwarmwasserunterstützung
16) Lüftungsanlage mit WRG 82%
17) Dichtheitsprüfung erforderlich!

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Tabelle der verwendeten Bauteile

	Bauteil	Bezeich	Ri.	Fläche [m²]	U-Wert [W/m²K]	Fak		winn /h/a]	Verlust [kWh/a]
1 1.1	Wand 17,5KS + WD18-035	AwSüd	s	83.49	0.181	1.00		147	1250
1.2	17.5KS + WD18-035	AwSüdDG	S	14.86	0.181	1.00		26	222
1.3	Dachgaubenwand	AwSüdGaube	S	31.79	0.223	1.00		69	586
1.4	17,5KS + WD18-035	AwWest	W	160.48	0.181	1.00		160	2402
1.5	17,5KS + WD18-035	AwWestDG	W	20.42 23.60	0.181 0.275	1.00 0.70		20	306 376
1.6	24KS + WD10-035	lwWestMüll AwWestGaube	W	33.88	0.273	1.00		42	625
1.7	Dachgaubenwand 17,5KS + WD18-035	AwNord	N	210.21	0.181	1.00		11	3146
1.9	17,5KS + WD18-035	AwNordDG	N	0.84	0.181	1.00		0	13
1.10	24KS + WD10-035	lwNordMüli	N	22.22	0.275	0.70			354
1.11	Dachgaubenwand	AwNordGaube	N	46.40	0.223	1.00		3	856
1.12	17,5KS + WD18-035	AwOst	0	324.92	0.181	1.00		419	4863
1.13	17,5KS + WD18-035	AwOstDG	0	18.76 20.73	0.181 0.275	1.00 0.70		24	281 330
1.14	24KS + WD10-035 Dachgaubenwand	lwOstMüll AwOstGaube	0	44.32	0.273	1.00		70	818
1.15	25Beton + WD12-035	KwSüdKG	s	28.67	0.260	0.70			432
1.17	25Beton + WD12-035	KwSüdTG	Š	37.95	0,266	1.00			836
1.18	25Beton + WD12-035	Aufzugunterfah	rtSü 6	4.21	0.269	0.60			56
1.19	25Beton + WD12-035	KwWestKG	W	45.14	0.260	0.70			680
1.20	25Beton + WD12-035	KwWestTG	W	9.13	0.266	1.00			201 56
1.21	25Beton + WD12-035	Aufzugunterfah		4.21 60.10	0.269 0.260	0.60			905
1.22	25Beton + WD12-035 25Beton + WD12-035	KwNordKG KwNordAL	N N	6.52	0.266	1.00		1	144
1.23	25Beton + WD12-035	Aufzugunterfah		5.10	0.269	0.60			68
1.25	25Beton + WD12-035	KwOstKG	0	43.71	0.260	0.70			658
1.26	25Beton + WD12-035	KwOstAL.	0	4.32	1	1.00		8	95
1.27	25Beton + WD12-035	KwOstErde	0	6.24		0.60			83
1.28	25Beton + WD12-035	Aufzugunterfah	rtOsO	5.10	0.269	0.60			68
				1317.31	0.19	90		1001	20709
2	Fenster, Fenstertüren	۸		21.12	0.900	1.00	g 0.48	2663	1574
2.1	zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9	AwSüd AwSüd	S	20.80	F	1.00	0.48	2623	1550
			1 0						
			S	t	i		0.48	2623	1550
2.3	zertifiziertes Fenster 0,9	AwSüd AwSüd	S	20.80 20.80	0.900	1.00	0.48 0.48	2623 2623	1550 1550
		AwSüd AwSüd AwSüdDG	S S S	20.80 20.80 13.00	0.900 0.900 0.900	1.00 1.00 1.00	0.48 0.48 0.48	2623 2623 1639	1550 1550 969
2.3 2.4 2.5 2.6	zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9	AwSüd AwSüd AwSüdDG AwSüdGaube	S S S	20.80 20.80 13.00 1.30	0.900 0.900 0.900 0.900	1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48	2623 2623 1639 164	1550 1550 969 97
2.3 2.4 2.5 2.6 2.7	zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9	AwSüd AwSüd AwSüdDG AwSüdGaube AwWest	S S S S W	20.80 20.80 13.00 1.30 21.12	0.900 0.900 0.900 0.900 0.900	1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1624	1550 1550 969 97 1574
2.3 2.4 2.5 2.6 2.7 2.8	zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9	AwSüd AwSüd AwSüdDG AwSüdGaube AwWest AwWest	8 8 8 8 8	20.80 20.80 13.00 1,30 21.12 20.80	0.900 0.900 0.900 0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1624 1599	1550 1550 969 97 1574 1550
2.3 2.4 2.5 2.6 2.7 2.8 2.9	zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9	AwSüd AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	20.80 20.80 13.00 1.30 21.12 20.80 20.80	0.900 0.900 0.900 0.900 0.900 0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1624	1550 1550 969 97 1574
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	zertifiziertes Fenster 0,9	AwSüd AwSüd AwSüdDG AwSüdGaube AwWest AwWest	8 8 8 8 8	20.80 20.80 13.00 1,30 21.12 20.80	0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1624 1599	1550 1550 969 97 1574 1550 1550
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9	AwSüd AwSüdDG AwSüdGaube AwSüdGaube AwWest AwWest AwWest AwWest	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	20.80 20.80 13.00 1.30 21.12 20.80 20.80 15.60 2.60	0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1624 1599 1599 1200 200	1550 1550 969 97 1574 1550 1550 1550 1163 194
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	zertifiziertes Fenster 0,9	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWest AwWestDG AwWestGaube AwNord	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	20.80 20.80 13.00 1.30 21.12 20.80 20.80 15.60 2.60 13.20	0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1624 1599 1599 1200 200 569	1550 1550 969 97 1574 1550 1550 1550 1163 194 984
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14	zertifiziertes Fenster 0,9	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWest AwWestDG AwWestGaube AwNord	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	20.80 20.80 13.00 1.30 21.12 20.80 20.80 20.80 15.60 2.60 13.20 24.70	0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1624 1599 1599 1200 200 569 1065	1550 1550 969 97 1574 1550 1550 1550 1163 194 984
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15	zertifiziertes Fenster 0,9	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWestDG AwWestGaube AwNord AwNord	888888888888888888888888888888888888888	20.80 20.80 13.00 1.30 21.12 20.80 20.80 15.60 2.60 13.20 24.70	0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1624 1599 1599 1200 200 569 1065	1550 1550 969 97 1574 1550 1550 1163 194 984 1841
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16	zertifiziertes Fenster 0,9	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWestDG AwWestGaube AwNord AwNord AwNord	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	20.80 20.80 13.00 1.30 21.12 20.80 20.80 25.60 13.20 24.70 24.70 22.10	0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1624 1599 1599 1200 200 569 1065 953	1550 1550 969 97 1574 1550 1550 1550 1163 194 984 1841 1841
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17	zertifiziertes Fenster 0,9 Haustür mit Fenster 1,2	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWestDG AwWestGaube AwNord AwNord AwNord AwNord AwNord AwNord	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	20.80 20.80 13.00 1.30 21.12 20.80 20.80 15.60 2.60 13.20 24.70 24.70 22.10	0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1624 1599 1599 1200 200 569 1065 953 39	1550 1550 969 97 1574 1550 1550 1153 194 984 1841 1841 1647 286
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18	zertifiziertes Fenster 0,9 Laustür mit Fenster 1,2 zertifiziertes Fenster 0,9	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWestDG AwWestGaube AwNord AwNord AwNord AwNord AwNord AwNord AwNord AwNord AwNord	888888888888888888888888888888888888888	20.80 20.80 13.00 1.30 21.12 20.80 20.80 25.60 13.20 24.70 24.70 22.10	0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1624 1599 1599 1200 200 569 1065 953	1550 1550 969 97 1574 1550 1550 1153 194 984 1841 1841 1647 286 775
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19	zertifiziertes Fenster 0,9	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWestDG AwWestGaube AwNord AwNord AwNord AwNord AwNord AwNord	888888888888888888888888888888888888888	20.80 20.80 13.00 1.30 21.12 20.80 20.80 15.60 2.60 13.20 24.70 22.10 2.80 10.40 26.40 28.60	0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1624 1599 1599 1200 569 1065 1065 953 348 2324 2518	1550 1550 969 97 1574 1550 1550 1163 194 984 1841 1841 1647 286 775 1968 2132
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18	zertifiziertes Fenster 0,9	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWestBDG AwWestGaube AwNord	888888888888888888888888888888888888888	20.80 20.80 13.00 1.30 21.12 20.80 20.80 15.60 2.60 13.20 24.70 22.10 2.80 10.40 26.40 28.60 28.60	0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1624 1599 1599 1200 200 569 1065 953 39 448 2324 2518	1550 1550 969 97 1574 1550 1550 1163 194 984 1841 1647 286 775 1968 2132 2132
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.20 2.21 2.22	zertifiziertes Fenster 0,9	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWestBDG AwWostGaube AwNord	888888888888888888888888888888888888888	20.80 20.80 13.00 1.30 21.12 20.80 20.80 15.60 2.60 13.20 24.70 22.10 2.88 10.40 26.40 28.60 28.60 28.60	0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1624 1599 1599 1200 200 569 1065 953 39 448 2324 2518 2518	1550 1550 969 97 1574 1550 1550 1550 1163 194 984 1841 1647 286 775 1968 2132 2132
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23	zertifiziertes Fenster 0,9	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWestBG AwWord AwNord	\$	20.80 20.80 13.00 1.30 21.12 20.80 20.80 15.60 2.60 13.20 24.70 22.10 2.88 10.40 26.40 28.60 28.60 28.60 28.60	0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1599 1599 1290 200 569 1065 953 39 448 2324 2518 2518 79	1550 1550 969 97 1574 1550 1550 1550 163 194 984 1841 1647 286 775 1968 2132 2132 2132
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.20 2.21 2.22 2.23 2.24	zertifiziertes Fenster 0,9 Laustür mit Fenster 1,2 zertifiziertes Fenster 0,9	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWestBG AwWord AwNord	\$	20.80 20.80 13.00 1.30 21.12 20.80 20.80 15.60 2.60 13.20 24.70 22.10 2.88 10.40 26.40 28.60 28.60 28.60 28.60	0.900 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1624 1599 1599 1200 200 569 1065 953 39 448 2324 2518 2518	1550 1550 969 97 1574 1550 1550 1163 194 984 1841 1841 1647 286 775 1968 2132 2132 2132 2132
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.20 2.21 2.22 2.22 2.23 2.24 2.25	zertifiziertes Fenster 0,9 Alutür gedämmt	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWestBG AwWord AwNord Awn	88888888888888888888888888888888888888	20.80 20.80 13.00 1.30 21.12 20.80 20.80 25.60 13.20 24.70 24.70 22.10 2.88 10.40 28.60 28.60 28.60 28.60 2.88 15.60	0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	2623 2623 1639 164 1599 1599 1290 200 569 1065 953 39 448 2324 2518 2518 79	1550 1550 969 97 1574 1550 1550 1163 194 984 1841 1841 1647 286 775 1968 2132 2132 2132 2132 233 286 1163 333
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.20 2.21 2.22 2.23 2.24 2.25 2.22	zertifiziertes Fenster 0,9 Austür mit Fenster 1,2 zertifiziertes Fenster 0,9 Alutür gedämmt zertifiziertes Fenster 0,9	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWestBG AwWord AwNord	\$	20.80 20.80 13.00 1.30 21.12 20.80 20.80 15.60 2.60 13.20 24.70 22.10 2.88 10.40 26.40 28.60 28.60 28.60 28.60	0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48	2623 2623 1639 164 1599 1599 1200 200 569 1065 953 39 448 2518 2518 2518	1550 1550 969 97 1574 1550 1550 1550 1163 194 984 1841 1841 1647 286 775 1968 2132 2132 2132 2132 286 1163 333 678 494
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.20 2.21 2.22 2.22 2.23 2.24 2.25	zertifiziertes Fenster 0,9 Alutur gedämmt zertifiziertes Fenster 0,9 Alutur gedämmt	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWestBaube AwNord	\$	20.80 20.80 13.00 1.30 21.12 20.80 20.80 20.80 15.60 24.70 24.70 22.10 2.88 10.40 28.60 28.60 28.60 2.88 15.60 2.88	0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48	2623 2623 1639 164 1599 1599 1290 200 569 1065 953 39 448 2518 2518 2518 79 1373	1550 1550 969 97 1574 1550 1550 1550 1163 194 984 1841 1647 286 775 1968 2132 2132 2132 2232 286 1163 333 678 494
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.20 2.21 2.22 2.23 2.24 2.25 2.25 2.27 2.28 2.29	zertifiziertes Fenster 0,9 Alutür gedämmt zertifiziertes Fenster 0,9 Alutür gedämmt	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWestGaube AwNord AwOst Awo Aword Awo	88888888888888888888888888888888888888	20.80 20.80 13.00 1.30 21.12 20.80 20.80 20.80 15.60 24.70 22.10 2.86 10.40 28.60 28.60 28.60 2.86 2.86 4.26 4.26 4.26 4.26	0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48	2623 2623 1639 1644 1529 1599 1200 569 1065 953 348 2518 2518 2518 79 1373 	1550 1550 969 97 1574 1550 1550 1550 1163 194 984 1841 1647 286 775 1968 2132 2132 2132 2132 286 1163 333 678 494
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.20 2.21 2.20 2.21 2.20 2.21 2.20 2.21 2.20 2.20	zertifiziertes Fenster 0,9 Alutür gedämmt zertifiziertes Fenster 0,9 Alutür gedämmt	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWestGaube AwNord AwOst Aword Aword AwOst AwOst AwOst Awo	88888888888888888888888888888888888888	20.80 20.80 13.00 1.30 21.12 20.80 20.80 20.80 15.60 24.70 22.10 2.86 10.40 28.60 28.60 28.60 2.86 4.26 4.26 4.26 4.26	0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48	2623 2623 1639 164 1624 1599 1599 1200 200 569 1065 953 39 448 2518 2518 2518 79 1373 	1550 1550 969 97 1574 1550 1550 1550 1163 194 984 1841 1647 286 775 1968 2132 2132 2132 2132 2132 286 1163 333 678 494 494
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.20 2.21 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.29 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.29 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.27 2.28 2.29 2.29 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.27 2.28 2.29 2.29 2.20 2.21 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.27 2.27 2.28 2.29 2.29 2.20 2.20 2.20 2.20 2.20 2.20	zertifiziertes Fenster 0,9 Alutür gedämmt zertifiziertes Fenster 0,9 Alutür gedämmt	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWestBGaube AwWord AwNord AwOst	88888888888888888888888888888888888888	20.80 20.80 13.00 1.30 21.12 20.80 20.80 20.80 15.60 2.60 13.20 24.70 22.10 2.88 10.40 28.60 28.60 28.60 28.60 2.88 15.60 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.26	0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48	2623 2623 1639 164 1599 1599 1200 200 569 1065 953 39 448 2324 2518 2518 2518 2518 403	1550 1550 969 97 1574 1550 1550 1550 1163 194 984 1841 1647 286 775 1968 2132 2132 2132 2132 2132 2132 494 494 494 494
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.27 2.28 2.27 2.28 2.29 2.20 2.21 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.20 2.21 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.29 2.20 2.21 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.29 2.20 2.20 2.20 2.20 2.20 2.20	zertifiziertes Fenster 0,9 Alutür gedämmt zertifiziertes Fenster 0,9 Alutür gedämmt Alutür gedämmt Alutür gedämmt Alutür gedämmt Alutür gedämmt zertifiziertes Dachfenster 0,9 Velux GGU SK06 RWA	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWestBGaube AwNord AwOst Awo Awot Awot Awo Awot Awot Awo Awot Awot	88888888888888888888888888888888888888	20.80 20.80 13.00 1.30 21.12 20.80 20.80 20.80 15.60 24.70 22.10 2.86 10.40 28.60 28.60 28.60 2.86 4.26 4.26 4.26 4.26	0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48	2623 2623 1639 164 1624 1599 1599 1200 200 569 1065 953 39 448 2518 2518 2518 79 1373 	1550 1550 969 97 1574 1550 1550 1550 1163 194 984 1841 1841 1647 286 775 1968 2132 2132 2132 2132 2132 494 494 494 494 494
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.20 2.21 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.29 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.29 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.27 2.28 2.29 2.29 2.29 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.27 2.28 2.29 2.29 2.20 2.21 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.27 2.27 2.28 2.29 2.29 2.20 2.20 2.20 2.20 2.20 2.20	zertifiziertes Fenster 0,9 Alutür gedämmt zertifiziertes Fenster 0,9 Alutür gedämmt Alutür gedämmt Alutür gedämmt Alutür gedämmt Alutür gedämmt zertifiziertes Dachfenster 0,9 Velux GGU SK06 RWA	AwSüd AwSüdDG AwSüdGaube AwWest AwWest AwWest AwWest AwWestBGaube AwWord AwNord AwOst	88888888888888888888888888888888888888	20.80 20.80 13.00 1.30 21.12 20.80 20.80 20.80 15.60 24.70 24.70 22.10 2.88 10.40 28.60 28.60 28.60 2.86 4.26 4.26 4.26 4.26 4.26 4.26 4.26 4.2	0.900 0.900	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.48 0.48	2623 2623 1639 164 1599 1599 1290 200 569 1065 953 39 448 2518 2518 79 1373 801	1550 1550 969 97 1574 1550 1550 1550 1163 194 984 1841 1647 286 775 1968 2132 2132 2132 2132 2132 2132 494 494 494 494 494 494 494

LANG () INGENEURET

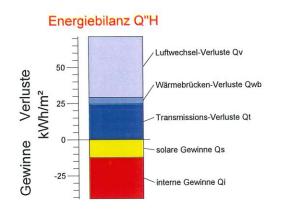
17.Jan 2022 14:02:33

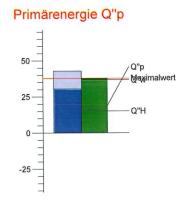
Neubau ETW - Teil B

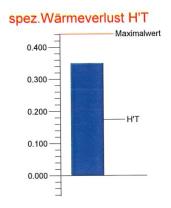
	Summe	:	3296.93	0.29	9	40012	8176
			242.50	0.17	75		3520
Decke gegen Außenluft unten 20Stb+TOP10-035+7-035+2-040	Tiefgaragendec	ke	242.50	0.175	1.00		3520
			429.50	0.18	37	20000	6662
20Stb+WD10-035+7-035+2-040	Müllraumdecke	-	54.00	0.171	0.65		498
20Stb+WD7-035+2-040	Kellerdecke	-			0.65		5167
Grundfläche, Kellerdecke 30Stb+WD10-040+2-040	Grundfläche	-	89.60	0.299	0.45		997
			844.72	0.21	9	1853	15313
20Stb+WD7-035+2-040	Müllraumboden	-	12.00	0.352	0.50		175
20Beton-Terrasse+WD15-035	Dachterrasse	-	33.00	0.221		54	603
	GaubeOst	ö	42.71	0.260	1.00	82	920
				0.260	1.00		796
							696
							2721 637
20Sparren + WD20-035	DaNord						2965
20Sparren + WD20-035	DaOst	0	235.41	0.211	1.00		4108
Decke zum Dachge., Dach 20Sparren + WD20-035	DaSüd	s	96.87	0.211	1.00	345	1691
	20Sparren + WD20-035 20Sparren + WD20-035 20Sparren + WD20-035 20Sparren + WD20-035 16Sparren + WD16-035 16Sparren + WD16-035 16Sparren + WD16-035 20Sparren + WD16-035 20Sparren + WD16-035 20Sparren + WD16-035 20Stb+WD7-035+2-040 Grundfläche, Kellerdecke 30Stb+WD10-040+2-040 20Stb+WD7-035+2-040 Decke gegen Außenluft unten	20Sparren + WD20-035 DaSüd 20Sparren + WD20-035 DaOst 20Sparren + WD20-035 DaNord 20Sparren + WD10-035 DaWest 16Sparren + WD16-035 GaubeSüd 16Sparren + WD16-035 GaubeWest 16Sparren + WD16-035 GaubeNord 16Sparren + WD16-035 GaubeOst 20Beton-Terrasse+WD15-035 Dachterrasse 20Stb+WD7-035+2-040 Müllraumboden Grundfläche, Kellerdecke GStb+WD10-040+2-040 20Stb+WD10-035+2-040 Grundfläche 20Stb+WD10-035+7-035+2-040 Kellerdecke Decke gegen Außenluft unten Z0Stb+TOP10-035+7-035+2-040 Tiefgaragendec Tiefgaragendec	20Sparren + WD20-035 DaSüd S 20Sparren + WD20-035 DaOst O 20Sparren + WD20-035 DaWord N 20Sparren + WD10-035 DaWest W 16Sparren + WD16-035 GaubeSüd S 16Sparren + WD16-035 GaubeWest W 16Sparren + WD16-035 GaubeNord N 16Sparren + WD16-035 GaubeOst O 20Beton-Terrasse+WD15-035 Dachterrasse - 20Stb+WD7-035+2-040 Müllraumboden - Grundfläche, Kellerdecke Grundfläche - 20Stb+WD7-035+2-040 Grundfläche - 20Stb+WD10-035+7-035+2-040 Müllraumdecke - Decke gegen Außenluft unten Decke gegen Außenluft unten -	DaSüd S 96.87	DaSüd S 96.87 0.211	DaSüd S 96.87 0.211 1.00	DaSud S 96.87 0.211 1.00 345 20Sparren + WD20-035 DaOst O 235.41 0.211 1.00 632 20Sparren + WD20-035 DaNord N 169.90 0.211 1.00 184 20Sparren + WD20-035 DaWest W 155.93 0.211 1.00 365 365 36Sparren + WD16-035 GaubeSüd S 29.59 0.260 1.00 57 36Sparren + WD16-035 GaubeWest W 32.34 0.260 1.00 62 36Sparren + WD16-035 GaubeWest W 32.34 0.260 1.00 62 36Sparren + WD16-035 GaubeWost W 32.34 0.260 1.00 62 36Sparren + WD16-035 GaubeNord N 36.96 0.260 1.00 71 36Sparren + WD16-035 GaubeNord N 36.96 0.260 1.00 71 36Sparren + WD16-035 GaubeNord N 36.96 0.260 1.00 82 30Stb+WD7-035+2-040 Müllraumboden - 12.00 0.352 0.50 344.72 0.219 1853 385b+WD10-040+2-040 Grundfläche - 89.60 0.299 0.45 38Stb+WD10-035+2-040 Kellerdecke - 285.90 0.336 0.65 38Stb+WD10-035+7-035+2-040 Müllraumdecke - 242.50 0.175 38Stb+WD10-035+7-035+2-040 Tiefgaragendecke 242.50 0.175 38Stb+WD10-035+7-035+2-040 Ti

Jahresprimärenergiebedarf Q"P = 37.9 [kWh/m²a]

Q"pmax = 38.1 [kWh/m²a] Q"pmax = 38.1 [kWh/m²a] spezifischer Transmissionswärmeverlust H'T = 0.349 [W/m²K] H'Tmax = 0.442 [W/m²K]


Übersicht der Projekteinstellungen und Eingabedaten


Nr.	Komponente	Einstellung
1	Berechnungsmodus	EnEV 2016, öffentlich rechtlich, nach DIN 4108-6/4701-10 Neubau 'andere Wohngebäude'
2	Gebäudetyp	WG (Wohngebäude), 34 Wohneinheiten, Nutzfläche 3017 m² Dach: teilweise beheizt, 4 Vollgeschosse, Keller: teilweise beheizt
3	Wärmebrücken	nach Beiblatt 2 mit 0.050 W/m²K
4	Dichtheitsnachweis	mit Dichtheitsprüfung nach Fertigstellung
5	Heizung	Brennwertkessel "verbessert" Erdgas H Speicher: Pufferspeicher z.B. bei Wärmepumpanlagen Verteilung: Heizkreistemperatur 55/45°C Wasserheizung: freie Heizflächen, elektronische Regeleinrichtung z.B.PI Regler
6	Warmwasser	42.2% solare Trinkwasser-Erwärmung Flachkollektor Ac=54.7m² 57.8% Brennwertkessel "verbessert" Erdgas H Speicher: bivalenter Solarspeicher Verteilung: gebäudezentrale Trinkwasseraufbereitung mit Zirkulation
7	Lüftungsanlage	Wohnungslüftungsanlage < 20°C ohne Bedarfsführung Abluft/Zuluft Wärmeübertrager dezentral,Wirkungsgrad 60%-80% AC- oder DC-Ventilatoren keine Wärmepumpe kein Heizregister Verteilung: dezentrale Lüftungsanlage
8	PV Anlage	keine
9	Referenzgebäude	Das Referenzgebäude wurde automatisch nach der EnEV Anlage 1 Tabelle 1 konfiguriert und berechnet und ist nicht durch den Anwender veränderbar.


LANG INGENIEURE

Neubau ETW - Teil B 17.Jan 2022 14:02:33

ENERGIEBILANZ

nutzbare Gewinne	[kWh/a]	Verluste		[kWh/a]		
solare Gewinne η*Qs : interne Gewinne η*Qi :	37158 86553	Transmission Qt Wärmebrücken Qwb Lüftungsverluste Qv Nachtabsenkung Qna solar opake Bauteile Qs opak	:	81766 13653 127431 -4524 -2854		
	123710	**		215472		

eine Nachtabschaltung wurde Anlagenaufwandszahl ep berücksichtigt
0.879
3016.8m²
Wohngebäude

Gebäudeart Jahresheizwärmebedarf Q"h

Transmissionswärmeverlust:

Nutzfläche

30.61kWh/m²a

Endergebnis der EnEV-Berechnung

Jahres-Primärenergiebedarf Q"P: bezogen auf die Gebäudenutzfläche maximal zulässiger Jahres-Primärenergiebedarf: spezifischer Transmissionswärmeverlust H'T: der Gebäudehüllfläche maximal zulässiger spezifischer

37.9 [kWh/m²a] 0.5% besser als Neubau

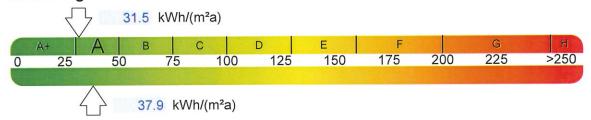
38.1 [kWh/m²a] 21.0% besser als Neubau

0.349 [W/m²K] 21.0% besser als Neubau

die maximal zulässigen Grenzwerte werden eingehalten.

Pretzfelder Straße 24 91320 Ebermannstadt
Telefon: 09194/7350 0 Fax: 09094/735040

Neubau ETW - Teil B


17.Jan 2022 14:02:33

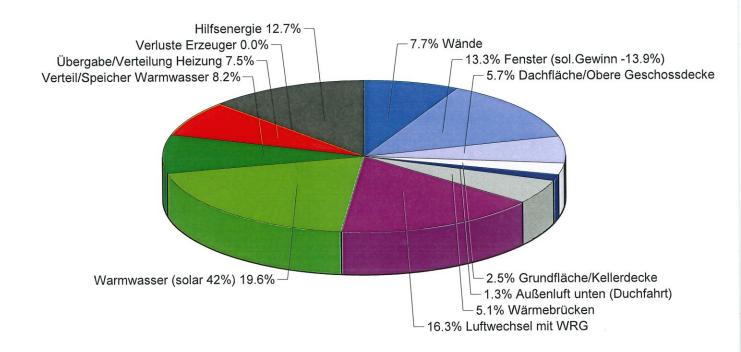
Effizienzlevel

Grundvariante optimiert

CO2-Emissionen 9.4 [kg/(m²*a)]

Endenergiebedarf

Primärenergiebedarf


NG INGENIEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Endenergieverteilung

Endenergieverteilung von 220117_Neubau ETW - Teil B_ENEV

In der Grafik ist die prozentuale Verteilung der Endenergie zu sehen. Skaliert wurde alles auf den Heizwärmebedarf. Nutzbare interne und solare Wärmegewinne wurden bei den Transmissions- und Lüftungsverlusten berücksichtigt.

Randbedingungen

Sommerlicher Wärmeschutz:

Der sommerliche Wärmeschutz wird mit den angegebenen Sonnenschutzvorrichtungen erfüllt.

Luftdichtheitsprüfung nach Fertigstellung:

Die Überprüfung der Dichtheit erfolgt nach §6 Abs. 1 der EnEV nach Fertigstellung des Gebäudes. Es darf der nach DIN EN 13829:2001-2 gemessene Volumenstrom, bei einer Druckdifferenz von 50 Pa, den Wert n50=1.5 1/h nicht überschreiten. Alternativ darf ab einem Luftvolumen von 1500m³ (hier 7542 m³) der auf die Gebäudehüllfläche bezogene q50 den Wert 2.5 m/h nicht überschreiten.

Der Luftdichtheitsnachweis (Messprotokoll) wird diesem Dokument später beigefügt!

Grundlage zur Ermittlung der Fx Werte für die Erdreichabminderung nach DIN 4108-6 Tabelle 3

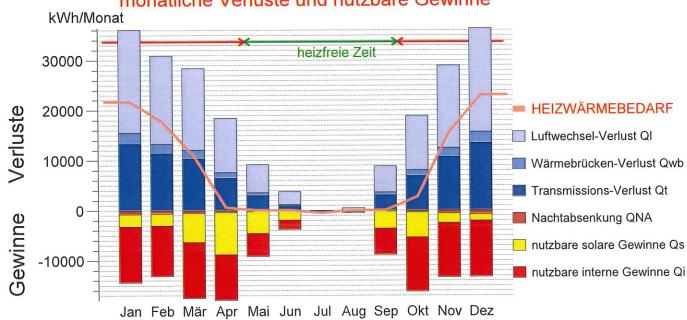
Grundflächenart	Ag[m²]	P[m]	B'
Grundfläche beheizter Keller gegen Erdreich	89.6	74.4	2.4
Kellerdecke gegen unbeheizten Keller	339.9	95.9	7.1
Wände des beheizten Kellers gegen Erdreich	89.6	74.4	2.4

P=Randstrecke der Grundfläche gegen das Erdreich

Pretzfelder Straße 24 91320 Ebermannstadt Telefon: 09194/7350 0 Fax: 09094/735040

Neubau ETW - Teil B

Gewinne und Verluste im einzelnen


kWh/Monat	Jan	Feb	März	April	Mai	Juni	Juli	Aug	Sep	Okt	Nov	Dez	gesamt
Ausnutzgrad η	1.000	1.000	0.999	0.844	0.411	0.170	0.000	0.016	0.483	0.967	1.000	1.000	
Q Verlust	35367	30330	27904	18125	9017	3716	0	333	8671	18564	28396	35626	216049
Q Gewinn	13678	12518	17010	20858	21963	21800	21515	20407	17943	16409	12809	12518	209429
η * Q Gewinn	13678	12518	16992	17596	9017	3716	0	333	8671	15862	12809	12518	123710
Qh,M	21688	17812	10912	529	0	0	0	0	0	2702	15587	23108	92338
Verluste im einzelne	n aufgesc	hlüsselt											
QT	13221	11344	10503	6966	3599	1635	0	294	3341	6978	10591	13294	81766
QS opak	-102	-57	155	496	604	654	578	453	259	89	-109	-167	2854
QNA Nachtabs.	768	646	568	364	188	85	0	15	174	364	578	774	4524
QT-QNA-QSopak	12554	10755	9781	6106	2807	896	-578	-174	2907	6524	10122	12687	74388
QwB	2208	1894	1754	1163	601	273	0	49	558	1165	1768	2220	13653
QL	20605	17680	16369	10856	5609	2548	0	458	5207	10875	16506	20719	127431
Gewinne im einzelne	en aufgeso	chlüsselt											
Qs	2456	2381	5787	9998	10740	10940	10292	9185	7082	5187	1949	1296	77293
Qı	11223	10136	11223	10861	11223	10861	11223	11223	10861	11223	10861	11223	132136
Die äquivalente Heiz	gradtage	zahl ermi	ttelt aus	dem ene	rgetische	n Niveau	des Gek	äudes					
Heiz-Gt	558	479	443	294	0	0	0	0	0	295	447	561	3077

Volumen und Flächen

9427.5 m³ Gebäudevolumen Ve Gebäudehüllfläche A 3296.9 m² **AVe** 0.350 1/m Außenwandfläche Aaw 1881.0 m² Fensterfläche Aw 443.0 m²

19.1 % (nach EnEV 2002-2007 Anhang 1 Absatz 2.8) Fensterflächenanteil f

monatliche Verluste und nutzbare Gewinne

Neubau ETW - Teil B

allgemeine Projektdaten

Temperatur Warmseite 9i

: 19°C (normale Innenraumtemperatur >= 19 °C nach Anhang 1 der EnEV)

Gebäudeart Warmwasseraufbereitung : Wohngebäude

: zentral

Bauart

ein Massivbau

das Gebäude ist

ein Neubau andere Wohngebäude

das Gebäude ist um

; 0.0° aus der Nord-Süd-Richtung gedreht.

Luftvolumenberechnung

Gebäudevolumen Ve

; 9427.5 m³

Luftvolumen

: 7542.0 m³

0,80 * Gebäudevolumen

Nutzflächenberechnung

Gebäudehöhe

; 17.00 m

Geschoßanzahl Gebäudegrundfläche : 4 : 672.0 m² : 170.3 m

Grundflächenumfang Gebäudenutzfläche

: 3016.8 m²

0.32 * Gebäudevolumen

Gebäudevolumen

Gebäudevolumen brutto

9427.5 m³

Volumen Außenbauteile Volumen Innenbauteile

946.5 m³ 0.0 m³

Gebäudevolumen netto

8481.0 m³

Gebäudegewicht

mittlere Dichte der Innenbauteile

----- kg/m³

Gewicht der Außenbauteile

1053666 kg

Gewicht der Trennwände

---- kg

Gebäudegewicht

1053666 kg

interne Wärmegewinne pauschaler Ansatz

in Wohngebäuden bei einer Nutzfläche von 24h/Tag 3017 m²

5W/m² ==>

120 Wh/m² pro Tag 362 kWh/Tag

132136 kWh/a

[10861 kWh/Monat]

davon nutzbare Wärmegewinne Q = 86553 kWh/a

Wärmebrücken pauschal mit Nachweis nach DIN 4108, Bbl.2

Es wurden ausschließlich wärmetechnisch äquivalente Konstruktionen nach DIN 4108, Bbl.2 verwendet.

Bei der Berechnung des Verlustes durch die Wärmebrücken wurde bei jedem verwendeten Bauteil ein Aufschlag auf den U-Wert von 0,05 W/m²K, berücksichtigt.

Dabei wurden 0.0 m² Oberfläche ausgenommen (z.B.Vorhangfassade).

ursprünglicher mittlerer U-Wert neuer mittlere U-Wert

0.299 W/m2K 0.349 W/m2K 16.70 %

[Abminderungsfaktoren sind berücksichtigt]

Transmissionsverlust erhöht sich um Owb =

13653 kWh/a

Seite 9 von 72

Telefon: 09194/7350 0 Fax: 09094/735040

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Luftwechsel

Lüftungsverluste Qv

127431 kWh/a

Luftvolumen:

7542.0 m³

Luftwechselrate:

0.60 h-1

Art der Lüftung:

maschinelle Lüftung mit Wärmetauscher

Nutzungsfaktor des Abluft-Zuluft-Wärmetauschersystems ην:

0 %

0.40 h-1

Anlagenluftwechsel nani:

Luftwechsel infolge Undichtheiten inkl. Fensteröffnungen nx:

0.20 h-1

Die genaue Berechnung der Lüftungsanlage erfolgt über die DIN 4701-10 Anlagenverordnung, dort werden auch mögliche Wärmerückgewinne berücksichtigt.

Die Luftwechselverluste des Gebäudes sind weiterhin über die DIN 4108-06 zu berücksichtigen.

Luftwechselverluste in kWh

Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
20605	17680	16369	10856	5609	2548	0	458	5207	10875	16506	20719

Klimaort

Es wurden Solar- und Klimadaten vom "mittleren Standort Deutschland " verwendet.

Solar-Referenzort:

mittlerer Standort Deutschland

Temperatur-Referenzort:

mittlerer Standort Deutschland

monatliches Temperaturmittel

Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	_
1.0	1.9	4.7	9.2	14.1	16.7	19.0	18.6	14.3	9.5	4.1	0.9	

monatliche Strahlungsintensität

	St	rahlungsi	ntensitäte	n die für d	lie Berech	nung ber	nötigten R	ichtungen	und Neig	ungen in	W/m²		
Richtung	Neig.	Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
waagerecht	0°	29	44	97	189	221	241	210	180	127	77	31	17
Süd	45°	57	56	124	214	218	224	194	193	160	119	44	29
Süd	90°	59	47	98	147	132	124	113	127	123	106	39	29
Ost	45°	31	41	91	181	198	217	194	163	115	74	28	16
Ost	90°	25	29	68	134	137	150	138	115	83	55	20	12
West	45°	24	36	84	159	187	201	174	153	112	65	27	16
West	90°	17	24	60	114	127	136	117	105	79	47	19	11
Nord	45°	15	26	43	90	136	161	145	95	56	33	19	10
Nord	90°	10	18	31	58	75	83	81	57	41	25	13	7

LANG INGENIEURE

Neubau ETW - Teil B 17.Jan 2022 14:02:33

Ausnutzungsgrad der Gewinne

Für die Berechnung des Ausnutzungsgrades η solarer und interner Wärmegewinne wurde der vereinfachte Ansatz verwendet.

die Bauart ist: Speicherfähigkeit:

Volumen: Cwirk:

spezifischer Wärmeverlust H:

ein Massivbau 50.00 Wh/m³K 9428 m³ 471376 Wh/K 2691 W/K

monatliche Ausnutzungsgrade

Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
1.000	1.000	0.999	0.844	0.411	0.170	0.000	0.016	0.483	0.967	1.000	1.000

Warmwasser

Warmwasser pauschal (12,5KWh/m²a)

Energiebedarf für die Warmwasseraufbereitung Qw 37710 kWh/a

Endenergie / CO₂ Ausstoß

			absolut		bezogen auf die Nutzfläche 3016.8 m²		
	Endenergie	CO ₂ kg/kWh	Bedarf kWh/a	CO ₂ kg/a	Bedarf kWh/m²a	CO ₂ kg/m²a	
1	Erdgas H	0.244	80808	19717	26.79	6.54	
2	Strom-Mix	0.617	14106	8704	4.68	2.89	
		Summe	94914	28421	31.46	9.42	

Als Berechnungsgrundlage des CO₂ Ausstoßes wurden GEMIS 4.13 Werte (www.gemis.de) verwendet

Schadstoffausstoß

Energieträger	NOx kg/m²a	NOx kg/a	CO kg/a	SO ₂ kg/a	Staub kg/a
Erdgas H	0.005	16.24	11.72	1.13	0.73
Strom-Mix	0.003	8.90	2.88	5.43	0.76
SUMME	0.008	25.14	14.59	6.56	1.49

Neubau ETW - Teil B 17.Jan 2022 14:02:33

Begrenzung der Leitungsverluste

Die Wärmeabgabe der Wärme- und Warmwasserverteilungsleitungen ist gem. § 14 Abs.5 i.V.m.Anhang 5 EnEV wie folgt zu begrenzen:

Zeile	Art der der Leitungen/Armaturen	Mindestdicke der Dämm- schicht, bezogen auf eine Wärmeleitfähigkeit von 0,035 W/(m².K)
1	Innendurchmesser bis 22 mm	20 mm
2	Innendurchmesser über 22 mm bis 35 mm	30 mm
3	Innendurchmesser über 35 mm bis 100 mm	gleich Innendurchmesser
4	Innendurchmesser über 100 mm	100 mm
5	Leitungen und Armaturen nach den Zeilen 1 bis 4 in Wand- und Deckendurchbrüchen, im Kreuzungsbereich von Leitungen, an Leitungsverbindungsstellen, bei zentralen Leitungsnetzverteilern	1/2 der Anforderungen der Zeilen 1 bis 4
6	Leitungen von Zentralheizungen nach den Zeilen 1 bis 4, die nach dem 31.Januar 2002 in Bauteilen zwischen beheizten Räumen verschiedener Nutzer verlegt werden.	1/2 der Anforderungen der Zeilen 1 bis 4
7	Leitungen nach Zeile 6 im Fußbodenaufbau	6 mm
8	Kälteverteilungs- und Kaltwasserleitungen sowie Armaturen von Raumlufttechnik- und Klimakältesystemen	6 mm

Soweit in den Fällen des § 14 Absatz 4 Wärmeverteilungs- und Warmwasserleitungen an Außenluft grenzen, sind diese mit dem Zweifachen der Mindestdicke nach Tabelle 1 Zeile 1 bis 4 zu dämmen

LANG INGENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Anlagenbewertung nach DIN 4701 Teil 10

für ein Gebäude mit normalen Innentemperaturen

Bezeichnung des Gebäud Ort: 90766 Fürth Gemarkung:	des: Neubau ETW -	- Teil B		S	traße/Nr.:Würzburger Straße 25 Flurstücknummer: 1386
I.Eingaben					
	A _N =	3016.8 m ²	tHP =	185 Tage	
	Trinkwa	assererwärmung		Heizung	Lüftung
absoluter Bedarf	Qtw =	37710.1 kWh/a	Qh =	92338.0 kWh/a	
bezogener Bedarf	q _{tw} =	12.50 kWh/m²a	qh =	30.61 kWh/m²a	
II.Systembeschrei Details siehe Trinkwasser-	-	ftungsbeschreibung			
III.Ergebnisse	qh,TW =	2.22 kWh/m²a	q _{h,H} =	12.13 kWh/m²a	qh,L = 16.26 kWh/m².
Σ Wärme Σ Hilfsenergie	QTW,E =	37183.7 kWh/a 948.8 kWh/a	QH,E =	43624.4 kWh/a 1693.6 kWh/a	QL,E = 0.0 kWh/.
Σ Primärenergie	Q _{TW,P} =	42609.9 kWh/a	QH,P =	51035.3 kWh/a	QL,P = 20635.0 kWh/
Endener	gie	QE :		80808 kWh/a	∑ Wärme
				14106 kWh/a	Σ Hilfsenergie
Primärer	nergie	Qp		114280 kWh/a	Σ Primärenergie
Anlagen	aufwandzahl	ер	=	0.879	

LANG INGENIEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Bereich 1:		Anteil 100.0 %	Nu	ıtzfläche 30	016.8 m ²			
		Wärmeverlust		Hilfsene	ergie	Heiz	zwärmegu	tschriften
Verlust aus EnEV:	q _{tw} =	12.50 kWh/m²a						
Übergabe:	q _{TW,ce} =	0.00 kWh/m²a	qTW,ce,HE =	0.00	kWh/m²a	qh,TW,ce =	0.00	kWh/m²a
Verteilung:	q _{TW,d} =	6.60 kWh/m²a	qTW,d,HE =	0.13	kWh/m²a	q _{h,TW,d} =	2.22	kWh/m²a
Verteilungsart: Verteilung des Trinkwass die Stichleitungen werder	ers ausserhalb	bäudezentrale Trinkwa thermischer Hülle r gemeinsamen Installa	-			nrt		
Speicherung:	q _{TW,s} =	0.86 kWh/m²a	qTW,s,HE =	0.03	kWh/m²a	q _{h,TW,s} =	0.00	kWh/m²a
Speicherart: der Speicher steht ausse	biverhalb der therm	ralenter Solarspeicher ischen Hülle						
Wärmeerzeuger:	$\Sigma =$	8.42 kWh/m²a	q _{TW,g,HE} =	0.26	kWh/m²a			
Wärmeerzeugerart: Energieträgerart: Deckungsanteil Aufwandzahl Erzeuger Endenergie Erzeuger Primärenergiefaktor Erze Primärenergie Erzeuger solare Trinkwassererwär Kollektorfläche für 12,5kl alpha1 alpha2 Aufstellung ausserhalb d	Sc euger mung über : Wh/m²	lare Trinkwasser-Erwäl larenergie		0.00 0.00 Flachko 54.7 0.422 1.000		sserbedarf nac	n EnEV	
Wärmeerzeuger:	$\Sigma =$	11.54 kWh/m²a	q _{TW,g,HE} =	0.07	kWh/m²a			
Wärmeerzeugerart: Energieträgerart: Deckungsanteil Aufwandzahl Erzeuger Endenergie Erzeuger Primärenergiefaktor Erze	Er	ennwertkessel "verbes dgas H ατw,g : eτw,g : qτw,E : f _{p,i} : qτw,P :	sert"	1.10	% kWh/m²a kWh/m²a			
Hilfsenergie:			Σ qTW,HE,E =	0.3	1 kWh/m²a			
Primärenergiefaktor Hilfs Primärenergie Hilfsenerg		f _{p,H} : qTW,HE,P:		1.80 0.57	kWh/m²a			
Endergebnis			Heizw	ärmegutscl	hrift pro m²:	q _{h,TW} =	2.22	kWh/m²
Wärmeendenergie pro n	n ²	qTW,E:		12.33	kWh/m²a			
Hilfsendenergie pro m²		qTW,HE,E:		0.31	kWh/m²a			
Primärenergie pro m²		дтw,р :		14.12	kWh/m²a			
Wärmeendenergie		QTW,E:		37183.7 I	kWh/a			
Hilfsendenergie		QTW,E:		948.8	kWh/a			
Primärenergie		QTW,P:		42609.9 I	(\Λ/h/a			

LANG INGENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

		TILIZO	JING HACI	h DIN 4701	ILIL IV		
Bereich 1:		Anteil 100	.0 %	Nut	zfläche 3016.8 m²		
		Wärm	everlust		Hilfsenergie		
Heizwärmebedarf	q _h =	30.61	kWh/m²a				
Heizwärmegutschriften	qh,TW =	2.22	kWh/m²a	vom Trinkw	asser		
Heizwärmegutschriften	q _{h,L} =	16.26	kWh/m²a	durch die Li	n die Lüftungsanlage		
Übergabe:	q _{c,e} =	0.70	kWh/m²a	q _{ce,HE} =	0.00 kWh/m²a		
	nente überwiege	nd im Außer	wandbereich		ıng z.B.PI Regler		
Verteilung:	qd =	1.88	kWh/m²a	qd,HE =	0.32 kWh/m²a		
Verteilungsart: die horizontale Verteilur Verteilungsstränge (vert ür die Verteilung der He	ig der Wärme erl ikal) überwiegen	folgt außerha d innenliege	nde Verteilun	ischen Hülle g (nicht an der A	ußenwand)		
Speicherung:	qs =	0.20	kWh/m²a	q _{s,HE} =	0.07 kWh/m²		
Speicherart: der Speicher steht auss der Pufferspeicher ist ni	erhalb der therm	ischen Hülle		/ärmepumpanlag itet	en		
Wärmeerzeuger:	Σ =	14.91	kWh/m²a	q _{g,HE} =	0.17 kWh/m²		
Wärmeerzeugerart: Energieträgerart: Deckungsanteil Aufwandzahl Erzeuger Endenergie Erzeuger Primärenergiefaktor Erz Primärenergie Erzeuge	reuger	Brennwertke Erdgas H	essel "verbes	sert"	100.0 % 0.970 14.46 kWh/m²a 1.10 15.91 kWh/m²a		
Hilfsenergie:				Σ qнε,ε =	0.56 kWh/m²		
Primärenergiefaktor Hil Primärenergie Hilfsene	rgie		fp,H : qHE,P :		1.80 1.01 kWh/m²a		
Endergebnis							
Wärmeendenergie pro	m ²		qн, <u>Е</u> :		14.46 kWh/m²a		
Hilfsendenergie pro m²			Ч Н,НЕ,Е :		0.56 kWh/m²a		
Primärenergie pro m²			qн,не,р :		16.92 kWh/m²a		
					43624.4 kWh/a		
Wärmeendenergie			QH,E:		40024.4 (WVIIIA		
Wärmeendenergie Hilfsendenergie			QH,E: QH,E:		1693.6 kWh/a		

Neubau ETW - Teil B

17.Jan 2022 14:02:33

		LÜ	FTUNG			
Bereich 1:		Anteil 100.0 %	Nut	zfläche 3016.8 m²		
		Wärmegewinn		Wärmeverlust		Hilfsenergie
Übergabe:	qL,ce =	-0.00 kWh/m²a			qL,ce,HE =	0.00 kWh/m²a
Übergabeart: z.B.Lüftungsanlagen mit Wär Anordnung der Luftauslässe	rmerückaewinnu	slüftungsanlage < 20 ng (durch Wärmeübe Außenwandbereich	°C ertrager) ohne N	lachheizung		
Verteilung:	q _{L,d} =	-0.00 kWh/m²a			qL,d,HE =	0.00 kWh/m²a
Verteilungsart:	dezentral	e Lüftungsanlage				
Luftwechselkorrektur:	q h,n =	-0.00 kWh/m²a				
Anlagenluftwechsel: anrechenbare Heizarbeit: (ql	h-qL.g.WEWRG+qI	1,n)		0.40 1/h (nA, _{norm} 14.3 kWh/m²a	=0,4 1/h)	
Ez WRG mit WÜT :	q L,g,WRG	16.26 kWh/m²a	(herstellerspe	zifisch)	qL,g,HE,WRG	3.80 kWh/m²
Erzeugerart: Wärmebereitstellungsgrad (\	Abluft/Zuluft W WRG) η'wrg : 8	ärmeübertrager deze 2 %	ntral,Wirkungsç 	grad 60%-80% AC- od	er DC-Ventilatore	n
Erzeuger L/L-WP :	QL,g,WP	0.00 kWh/m²a	qL,g,WP	0.00 kWh/m²a	QL,g,HE,WP	0.00 kWh/m²
Erzeugerart:	keine Wärmep	umpe	_			
Erzeuger Heizregister:	QL,g,HR	0.00 kWh/m²a	qL,g,HR	0.00 kWh/m²a	qL,g,HE,HR	0.00 kWh/m²
Erzeugerart:	kein Heiz	register				
Hilfsenergie:					Σ qL,HE,E =	3.80 kWh/m²
Primärenergiefaktor Hilfsenergie Primärenergie Hilfsenergie	ergie	fp.H qL,HE,P		1.80 6.84 kWh/m²a		
Endergebnis						
Lüftungsbeitrag am Q _h :	qh,L ==	16.26 kWh/m²a	a			
Wärmeendenergie pro m²		qL,E :		0.00 kWh/m²a		
Hilfsendenergie pro m²		qL,HE,E :		3.80 kWh/m²a		
Primärenergie pro m²		qL,HE,P:		6.84 kWh/m²a		
Wärmeendenergie		QL,E:		0.0 kWh/a		
Hilfsendenergie		QL,E:		11463.9 kWh/a		
Primärenergie		QL,P:	***************************************	20635.0 kWh/a		

91320 Ebermannstadt Telefon: 09194/7350 0 Fax: 09094/735040

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Überprüfung des Mindestwärmeschutz der Bauteile nach DIN 4108-2 2013-02

Bauteil	Flächen- gewicht kg/m²	Innen- raum- temp	R m²K/W	Grenz- wert m²K/W	Art	Ergebnis
17,5KS + WD18-035	379.2	normal	5.36	1.20	*1	ОК
Dachgaubenwand	84.8	normal	4.32	1.75	*7	ОК
24KS + WD10-035	480.0	normal	3.38	1.20	*1	ОК
25Beton + WD12-035	671.8	normal	3.59	1.20	*1	ОК
25Beton + WD12-035	671.8	normal	3.59	1.20	*1	ОК
25Beton + WD12-035	671.8	normal	3.59	1.20	*1	ОК
20Sparren + WD20-035	70.7	normal	5.79	1.75	*8	ОК
16Sparren + WD16-035	59.3	normal	4.64	1.75	*8	ОК
20Beton-Terrasse+WD15-035	482.5	normal	4.39	1.20	*1 *?	OK
20Stb+WD7-035+2-040	621.2	normal	2.64	0.90	*1 *?	OK
30Stb+WD10-040+2-040	851.2	normal	3.18	0.90	*1 *?	OK
20Stb+WD7-035+2-040	621.2	normal	2.64	0.90	*1 *?	OK
20Stb+WD10-035+7-035+2-040	624.2	normal	5.50	0.90	*1 *?	ОК
20Stb+TOP10-035+7-035+2-040	624.2	normal	5.50	1.75	*1 *?	ОК

Art der Berechnung: nach DIN 4108-2:2013-02:

*1 Tabelle 3, normale Bauteile >=100kg/m²

*7 Bauteil mit weniger als 100 kg Flächengewicht

*8 Gefachbauteil mit weniger als 100 kg Flächengewicht

Sommerlicher Wärmeschutz nach DIN 4108-2 2013-02

Solarzone:

gemäßigt (Grenzwert Innentemperatur 26°C)

Fhene:

2.Obergeschoss

Grundfläche Ag:

13.08 qm

Zimmer 1 WHG 4.12.-4 Raum:

Fensterfläche Aw: Bauart:

5.20 qm mittel ohne

Fensterflächenanteil fwg:

39.8 %

Nachtlüftung: Überprüfung ab 10.0 % erforderlich.

Sonneneintragskennwert S: 0.019

Smax: 0.035

Anforderung ist erfüllt

"ZERTIFIZIERT" -- zertifiziertes Fenster 0,9 Fenster:

BauteilNr: 2.20

Kurzbezeichnung: AwOst sommerlicher Sonnenschutz Fc=0.100 (Herstellerangabe) Energiedurchlassgrad: 48.00 %

Fläche: 2.60 qm

Orientierung: O

"ZERTIFIZIERT" -- zertifiziertes Fenster 0,9

Fenster: BauteilNr: 2.2 Kurzbezeichnung: AwSüd

sommerlicher Sonnenschutz Fc=0.100 (Herstellerangabe)

Energiedurchlassgrad: 48.00 %

Fläche: 2.60 qm Orientierung: S

^{*?} einige Dichten fehlen im Schichtaufbau, das Ergebnis der Berechnung ist evtl. nicht korrekt

Lang Ingenieure GmbH + Co. KG Pretzfelder Straße 24

91320 Ebermannstadt Telefon: 09194/7350 0 Fax: 09094/735040

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Ebene: Raum:

Dachgeschoss

Wohnen WHG 3.15.-4

Grundfläche Ag: Fensterfläche Aw: 24.13 qm 1.30 qm

Bauart: Nachtlüftung: mittel ohne

Fensterflächenanteil fwg:

5.4 %

Überprüfung ab 10.0 % erforderlich.

Sonneneintragskennwert S: 0.000

Smax: 0.000

Anforderung ist erfüllt

Fenster:

"ZERTIFIZIERT" -- zertifiziertes Fenster 0,9

BauteilNr: 2.6

Kurzbezeichnung: AwSüdGaube

Energiedurchlassgrad: 48.00 %

Fläche: 1.30 gm

feststehender Sonnenschutz außenliegend: Jalousien, Rollläden 3/4 geschlossen, Fensterläden

Orientierung: S

Ebene: Raum:

Dachgeschoss Zimmer 3 WHG 4.19.-3 Grundfläche Ag: Fensterfläche Aw: 27.97 qm

Bauart:

7.80 qm mittel ohne

Fensterflächenanteil fwg:

27.9 %

Nachtlüftung: Überprüfung ab 10.0 % erforderlich.

Sonneneintragskennwert S: 0.022

Smax: 0.063

Anforderung ist erfüllt

"ZERTIFIZIERT" -- zertifiziertes Fenster 0,9 Fenster:

BauteilNr: 2.26

Kurzbezeichnung: AwOstGaube

Energiedurchlassgrad: 48.00 % sommerlicher Sonnenschutz außenliegend: Jalousien, Rollläden 3/4 geschlossen, Fensterläden

Fläche: 2.60 qm Orientierung: O

Fenster: BauteilNr: 2.20

"ZERTIFIZIERT" -- zertifiziertes Fenster 0,9

Energiedurchlassgrad: 48.00 %

Fläche: 5.20 qm

Orientierung: O

Kurzbezeichnung: AwOst

sommerlicher Sonnenschutz Fc=0.100 (Herstellerangabe)

Fhene: Raum:

Erdaeschoss Zimmer 3 WHG 3.01.-7 Grundfläche Ag:

10.25 qm

Fensterfläche Aw: Bauart:

2.64 qm

Nachtlüftung:

mittel ohne

Fensterflächenanteil fwg:

25.8 %

Überprüfung ab 10.0 % erforderlich.

Sonneneintragskennwert S: 0.037

Smax: 0.068

Anforderung ist erfüllt

Fenster:

"ZERTIFIZIERT" -- zertifiziertes Fenster 0,9

BauteilNr: 2.1

Kurzbezeichnung: AwSüd

Energiedurchlassgrad: 48.00 %

Fläche: 2.64 qm

sommerlicher Sonnenschutz außenliegend: Jalousien, Rollläden 3/4 geschlossen, Fensterläden

Orientierung: S

Zwischenergebnisse sommerlicher Wärmeschutz nach DIN 4108-2 2013-02

Raum	AG m²	Aw m²	g	Fc	Fs	Bau- art	Nacht Lüft.	S1	fwg %	S2	S3 gtot <=0.4	fneig	S4	fnord	S5	S6	S	Smax	OK?
Zimmer 1 WHG 4.124	13.1	5.2	0.48	0.10	1.00	mittel	ohne	0.067	39.8	-0.032							0.019	0.035	ОК
Wohnen WHG 3.154	24.1	1.3	0.48	0.30	1.00	mittel	ohne		5.4		0.030								OK*
Zimmer 3 WHG 4.193	28.0	7.8	0.48	0.17	1.00	mittel	ohne	0.067	27.9	-0.004							0.022	0.063	ОК
Zimmer 3 WHG 3.017	10.2	2.6	0.48	0.30	1.00	mittel	ohne	0.067	25.8	0.001							0.037	0.068	ОК

OK*=der Fensterflächenanteil ist so klein, daß auf eine Überprüfung verzichtet werden kann

Ag=netto Raumgrundfläche Aw=brutto Fensterfläche g=Energiedurchlassgrad der Verglasung Fc=Multiplikator für Verschattungseinrichtung (--- keine vorhanden) Bauart=leicht,mittel,schwer Nachtlüftung=ohne, erhöhte Nachtlüftung mit n>=2/h, hohe Nachtlüftung mit n>=5/h S1=Tabellenwert Bauart,Nachtlüftung,Klimaregion

fwg=Fensterflächenanteil bezogen auf die Raumgrundfläche S2 = aus grundflächenbezogener Fensterflächenanteil S3 gtot<=0.4=Bonus für Sonnenschutzverglasung oder feststehende Verschattung fneig=Mallus geneigte Fenster <60° S4=-0,035*fneig fnord=Bonus Nordfenster S5=+0,10*fnord S6=passive Kühlung

S=berechneter Sonneneintragskennwert Smax=maximal zulässiger Sonneneintragskennwert

Neubau ETW - Teil B 17.Jan 2022 14:02:33

Dampfdiffusionsnachweis

Bauteil	Fall	Tauw.	Verd.	Rest	Schicht	OK
	R-Type	kg/m²	kg/m²	kg/m²		
17.5KS + WD18-035	A 1			*****		OK
Dachgaubenwand	A 1					OK
24KS + WD10-035	A 4					OK
25Beton + WD12-035	A 4					OK
25Beton + WD12-035	A 1					ΟK
25Beton + WD12-035	A 2					OK
20Sparren + WD20-035	A 3		~====			OK
Balkenbereich	A 3					OK
16Sparren + WD16-035	A 3					OK
Balkenbereich	A 3		****			OK
20Beton-Terrasse+WD15-035	A 3					OK
20Stb+WD7-035+2-040	B 5	0.001	0.060		4/5	OK
20Stb+TOP10-035+7-035+2-040	A 1					OK

Randbedingungen der Dampfdiffusionsberechnung

R-Type	°C warm	°C kalt	% warm	% kalt	Stunden	°C Dach
Type 1 normale Außenwand						
Tauperiode	20	-5	50	80	2160	
Verdunstungsperiode	12	12	70	70	2160	
Type 2 Außenwand/Grundfläche gegen Erdreich						
Tauperiode	20	8	50	80	8760	
Verdunstungsperiode	12	8	70	70	0	
Type 3 Dach/Decke gegen Außenluft						
Tauperiode	20	-5	50	80	2160	
Verdunstungsperiode	12	12	70	70	2160	20
Type 4 Decke/Wand gegen unbeheizten Keller						
Tauperiode	20	12	50	80	2160	
Verdunstungsperiode	12	12	70	70	2160	
Type 5 Wand/Decke gegen Temperaturteiler Faktor 0.5						
Tauperiode	20	5	50	80	2160	
Verdunstungsperiode	12	12	70	70	2160	

91320 Ebermannstadt Fax: 09094/735040

Neubau ETW - Teil B

17.Jan 2022 14:02:33

 m^2

167.0

Seitenwinkel: 0°

Ff 1.000

Bauteilverwendung und Flächenberechnung

Bauteile der Bauteilart: Wand

BAUTEIL 1.1 17.5KS + WD18-035 Wand Wohngebäude Kategorie

0.13 m2K/W Rsi $0.04 \text{ m}^2\text{K/W}$ Rse

normale Außenwand beheizter Räume Einsatzart Strahlungsabsorptionsgrad α : 0.50 heller Anstrich (öffentlich rechtlich)

0.80 Emissionsgrad ε: AwSüd Kurzbez.

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

0.181 W/m2K U-Wert 379,2 kg/m² Flächengewicht

Bauteilorientierung

90.0° senkrecht Neigung Richtung 180.0° Süden

Flächenberechnung:

38.0 EG Länge 13.37 * Geschosshöhe 2.84 112.3 erstesbisdrittesOG Länge 13.37 * Geschosshöhe 2.80 * 3 DG Länge 3.2 * Höhe 2.60 * 0.5 * 4 + DG Breite 0.45 * Höhe 0.4 * 0.5 16.7

zugeordnete Fenster W/m²K m² Type Firma zertifiziertes Fenster 0,9 0.900 21.1 "ZERTIFIZIERT" zertifiziertes Fenster 0,9 0.900 20.8 "ZERTIFIZIERT" 0.900 20.8 zertifiziertes Fenster 0,9 "ZERTIFIZIERT" 0.900 20.8 zertifiziertes Fenster 0,9 "ZERTIFIZIERT" Fensterfläche = 83.5

Netto-Bauteilfläche m² = 83.5

Überhangwinkel: 0°

Fo 1.000

BAUTEIL 2.1 : "ZERTIFIZIERT" : zertifiziertes Fenster 0,9 Glastype

: 0.90 W/m²K inklusiv Rahmen (Herstellerangabe) **U-Wert Fenster**

: 48.0 % Energiedurchlassgrad Vorhangfassade : nein

Verbauungswinkel: 0° Verschattungswinkel Verschattungsfaktoren : Fs 0.900

Rahmenverschattung : Fr 0.700 : Fc 1.000 sommerlicher Sonnenschutz Sonnenschutzverschattung

: außenliegend: Jalousien, Rollläden 3/4 geschlossen, Fensterläden

Verschattung 4108-2

Bruttofläche

10.56 m² 2 Stück ==> 2.64 m Anzahl: 2.00 m Höhe: Breite: 10.56 m² 4 Stück ==> Anzahl: 1.00 m Höhe: 2.64 m Breite:

Fh 1.000

21.12 m² Gesamtfensterfläche:

Brutto-Bauteiifläche =

BAUTEIL 2.2 : "ZERTIFIZIERT" : zertifiziertes Fenster 0,9 Glastype

: 0.90 W/m²K inklusiv Rahmen (Herstellerangabe) U-Wert Fenster

Energiedurchlassgrad 48.0 % Vorhangfassade · nein

Verbauungswinkel: 0° Überhangwinkel: 0° Seitenwinkel: 0° Verschattungswinkel Fo 1.000 Ff 1.000 Verschattungsfaktoren : Fs 0.900 Fh 1.000 : F_F 0.700

Rahmenverschattung sommerlicher Sonnenschutz Fc=0.100 (Herstellerangabe) : Fc 1.000 Sonnenschutzverschattung

Bruttofläche

10.40 m² Höhe: 2.60 m Anzahl: 2 Stück ==> 2.00 m Breite: 4 Stück 10.40 m² ==> 2.60 m Anzahl: Höhe: Breite: 1.00 m

> 20.80 m² Gesamtfensterfläche:

Lang Ingenieure GmbH + Co. KG 91320 Ebermannstadt Pretzfelder Straße 24 Telefon: 09194/7350 0 Fax: 09094/735040

ANG () INGENIEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

: "ZERTIFIZIERT" BAUTEIL 2.3

: zertifiziertes Fenster 0,9 Glastype

U-Wert Fenster

0.90 W/m²K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad

Vorhangfassade

48.0 % : nein

Verschattungswinkel Verschattungsfaktoren

Verbauungswinkel: 0° : Fs 0.900 Fh 1.000 Überhangwinkel: 0° Fo 1.000 Seitenwinkel: 0° Fr 1.000

: Fr 0.700 Rahmenverschattung Sonnenschutzverschattung : Fc 1.000

Bruttofläche

2.00 m Breite: Breite: 1.00 m Höhe: Höhe: 2.60 m 2.60 m Anzahl: Anzahl: 2 Stück 4 Stück ==>

10.40 m² 10.40 m²

Gesamtfensterfläche:

20.80 m²

BAUTEIL 2.4 Glastype

: "ZERTIFIZIERT" : zertifiziertes Fenster 0,9

U-Wert Fenster

: 0.90 W/m²K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad Vorhangfassade

48.0 %

nein

Verschattungswinkel

Verschattungsfaktoren : Fs 0.900 : Fr 0.700 Verbauungswinkel: 0° F_h 1.000 Überhangwinkel: 0°

Seitenwinkel: 0°

Fo 1.000

Fr 1.000

Rahmenverschattung Sonnenschutzverschattung

: Fc 1.000

Bruttofläche

2.00 m Breite: Breite:

Höhe: Höhe: 1.00 m

2.60 m 2.60 m Anzahi: Anzahl: 2 Stück 4 Stück

==> ==> 10.40 m² 10.40 m²

Gesamtfensterfläche:

20.80 m²

BAUTEIL 1.2 Kategorie

17,5KS + WD18-035 Wand Wohngebäude

Rsi

0.13 m2K/W

Rse

0.04 m2K/W normale Außenwand beheizter Räume

Einsatzart Strahlungsabsorptionsgrad α : 0.50 heller Anstrich (öffentlich rechtlich)

Emissionsgrad ε:

0.80

AwSüdDG Kurzbez.

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor) 0.181 W/m2K U-Wert 379.2 kg/m² Flächengewicht

Bauteilorientierung

Neigung Richtung

senkrecht 180.0° Süden

Flächenberechnung:

 m^2

DG Länge 3.555 * Höhe 2.60 + Länge 6.65 * Höhe 2.80

Brutto-Bauteilfläche =

27.9 m^2

zugeordnete Fenster Firma

"ZERTIFIZIERT"

Type zertifiziertes Fenster 0,9

W/m²K 0.900 Fensterfläche =

13.0 13.0

27.9

Netto-Bauteilfläche m2 =

14.9

Lang Ingenieure GmbH + Co. KG Pretzfelder Straße 24

91320 Ebermannstadt Fax: 09094/735040 Telefon: 09194/7350 0

Neubau ETW - Teil B

17.Jan 2022 14:02:33

: "ZERTIFIZIERT" BAUTEIL 2.5

: zertifiziertes Fenster 0,9 Glastype

U-Wert Fenster

0.90 W/m²K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad Vorhangfassade

Verschattungsfaktoren

Rahmenverschattung

48.0 %

: nein Verschattungswinkel

: Fs 0.900

Verbauungswinkel: 0° Fh 1.000 Überhangwinkel: 0°

Seitenwinkel: 0°

Fo 1.000

Fr 1.000

Sonnenschutzverschattung

: Fr 0.700 : Fc 1.000

Bruttofläche

2.00 m Breite: Breite: 1.00 m Höhe: Höhe:

Anzahl: 2.60 m 2.60 m Anzahl:

2 Stück 1 Stück

10.40 m² 2.60 m²

Gesamtfensterfläche:

13.00 m²

m²

3.4

29.7

33.1

m²

1.3

1.3

BAUTEIL 1.3 Kategorie

Dachgaubenwand Wand leicht

Rsi Rse 0.13 m2K/W 0.04 m2K/W

Einsatzart

normale Außenwand beheizter Räume Strahlungsabsorptionsgrad α : 0.50 heller Anstrich (öffentlich rechtlich)

Emissionsgrad ε:

AwSüdGaube Kurzbez.

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor) U-Wert : 0.223 W/m²K

Flächengewicht

84.8 kg/m²

Bauteilorientierung

Neigung Richtung 90.0° senkrecht 180.0° Süden ==>

Flächenberechnung:

DG Länge 1.54 * Höhe 2.2 * 1 DG Breite 3.0 * Höhe 2.2 * 0.5 * 9

zugeordnete Fenster

Firma "ZERTIFIZIERT"

Type zertifiziertes Fenster 0,9 Brutto-Bauteilfläche = W/m²K

0.900 Fensterfläche =

Netto-Bauteilfläche m² = 31.8

BAUTEIL 2.6 Glastype

· "7FRTIFIZIERT"

: zertifiziertes Fenster 0,9

U-Wert Fenster

0.90 W/m²K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad Vorhängfassade

48.0 %

Verschattungswinkel Verschattungsfaktoren

Verbauungswinkel: 0° Fh 1.000 Überhangwinkel: 0° Fo 1.000 Seitenwinkel: 0° Ff 1.000

Rahmenverschattung

: Fs 0.900

: Fr 0.700

feststehender Sonnenschutz : Fc 1.000

Sonnenschutzverschattung Verschattung 4108-2

: außenliegend: Jalousien, Rollläden 3/4 geschlossen, Fensterläden

Bruttofläche

Breite:

1.00 m

Höhe:

: nein

1.30 m

Anzahl:

1 Stück

==>

1.30 m²

Gesamtfensterfläche:

1.30 m²

LANG DINGENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

m²

BAUTEIL 1.4 17,5KS + WD18-035 Wand Wohngebäude Kategorie

0.13 m2K/W Rsi 0.04 m2K/W Rse

normale Außenwand beheizter Räume Einsatzart Strahlungsabsorptionsgrad α : 0.50 heller Anstrich (öffentlich rechtlich)

Emissionsgrad ε: 0.80 **AwWest** Kurzbez.

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

0.181 W/m²K U-Wert 379.2 kg/m² Flächengewicht Bauteilorientierung

Neigung Richtung 90.0° senkrecht -90.0° Westen

Flächenberechnung

60.6 EG Breite 21.33 * Geschosshöhe 2.84 179.2 erstesbisdrittesOG Breite 21.33 * Geschosshöhe 2.80 * 3 4.2 DG Breite 3.2 * Höhe 2.6 * 0.5 + DG Breite 0.45 * Höhe 0.4*0.5 Brutto-Bauteilfläche = 244.0

zugeordnete Fenster Firma

W/m²K m^2 Type 0.900 21.1 "ZERTIFIZIERT" zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 0.900 20.8 "ZERTIFIZIERT" zertifiziertes Fenster 0,9 0.900 20.8 "ZERTIFIZIERT" 0.900 20.8 zertifiziertes Fenster 0,9 "ZERTIFIZIERT" Fensterfläche = 83.5

> Netto-Bauteilfläche m2 = 160.5

BAUTEIL 2.7 : "ZERTIFIZIERT" ; zertifiziertes Fenster 0,9 Glastype

: 0.90 W/m²K inklusiv Rahmen (Herstellerangabe) U-Wert Fenster

Energiedurchlassgrad : 48.0 % : nein

Vorhangfassade

Seitenwinkel: 0° Überhangwinkel: 0° Verbauungswinkel: 0° Verschattungswinkel Fo 1.000 Ff 1.000 Fh 1.000 Verschattungsfaktoren : Fs 0.900

; F_F 0.700 Rahmenverschattung : Fc 1.000

Sonnenschutzverschattung

Bruttofläche

15.84 m² 6 Stück ==> 2.64 m Anzahl: 1.00 m Höhe: Breite: 5.28 m² 1 Stück ==> 2.64 m Anzahl: Höhe: Breite: 2.00 m

21.12 m² Gesamtfensterfläche:

Überhangwinkel: 0°

Seitenwinkel: 0°

: "ZERTIFIZIERT" BAUTEIL 2.8 : zertifiziertes Fenster 0,9 Glastype

0.90 W/m²K inklusiv Rahmen (Herstellerangabe) U-Wert Fenster

Energiedurchlassgrad 48.0 % : nein

Vorhangfassade

Verschattungswinkel

Verbauungswinkel: 0° Ff 1.000 Fh 1.000 Fo 1.000 : Fs 0.900 Verschattungsfaktoren : Fr 0.700 Rahmenverschattung : Fc 1.000

Sonnenschutzverschattung

Bruttofläche :::=> 15.60 m² 6 Stück 1,00 m Höhe: 2.60 m Anzahl: Breite: 5.20 m² 2.60 m Anzahl: 1 Stück ==> Höhe: Breite: 2.00 m

Gesamtfensterfläche: 20.80 m²

ANG DINGENEURE

17.Jan 2022 14:02:33 Neubau ETW - Teil B

: "ZERTIFIZIERT" BAUTEIL 2.9 : zertifiziertes Fenster 0,9 Glastype

: 0.90 W/m²K inklusiv Rahmen (Herstellerangabe) **U-Wert Fenster**

Energiedurchlassgrad : 48.0 % Vorhangfassade : nein

Überhangwinkel: 0° Seitenwinkel: 0° Verbauungswinkel: 0° Verschattungswinkel Ff 1.000 Fh 1.000 Fo 1.000 Verschattungsfaktoren : Fs 0.900

: Fr 0.700 Rahmenverschattung Sonnenschutzverschattung : Fc 1.000

Bruttofläche

15.60 m² 6 Stück ==> 1.00 m Höhe: 2.60 m Anzahl: Breite: 5.20 m² 1 Stück Breite: 2,00 m Höhe: 2.60 m Anzahi:

> 20.80 m² Gesamtfensterfläche:

BAUTEIL 2.10 : "ZERTIFIZIERT" : zertifiziertes Fenster 0,9 Glastype

: 0.90 W/m²K inklusiv Rahmen (Herstellerangabe) U-Wert Fenster

Energiedurchlassgrad 48.0 % Vorhangfassade : nein

Seitenwinkel: 0° Verbauungswinkel: 0° Überhangwinkel: 0° Verschattungswinkel Ff 1.000 Fo 1.000 : Fs 0.900 Fh 1.000 Verschattungsfaktoren

: Fr 0.700 Rahmenverschattung

: Fc 1.000 Sonnenschutzverschattung

Bruttofläche

15.60 m² 6 Stück ==> 1.00 m Höhe: 2.60 m Anzahl: Breite: 1 Stück 5.20 m² Anzahl: 2.60 m Breite: 2.00 m Höhe:

20.80 m² Gesamtfensterfläche:

BAUTEIL 1.5 17,5KS + WD18-035 Wand Wohngebäude Kategorie

0.13 m2K/W Rsi

0.04 m2K/W Rse normale Außenwand beheizter Räume Einsatzart Strahlungsabsorptionsgrad α : 0.50 heller Anstrich (öffentlich rechtlich)

Emissionsgrad ε: 0.80 AwWestDG Kurzbez.

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

0.181 W/m2K U-Wert Flächengewicht 379.2 kg/m²

Bauteilorientierung

90.0° senkrecht Neigung -90.0° Westen Richtung ==>

m² Flächenberechnung:

DG Breite 3.64 * Höhe 2.6 + DG Breite 9.485 * Höhe 2.80 36.0 Brutto-Bauteilfläche = 36.0

zugeordnete Fenster W/m²K m² Type Firma

15.6 zertifiziertes Fenster 0,9 0.900 "ZERTIFIZIERT" Fensterfläche = 15.6

Netto-Bauteilfläche m² = 20.4

LANGE MINGENEURS

17.Jan 2022 14:02:33 Neubau ETW - Teil B

BAUTEIL 2.11 : "ZERTIFIZIERT" : zertifiziertes Fenster 0,9 Glastype

: 0.90 W/m²K inklusiv Rahmen (Herstellerangabe) U-Wert Fenster 48.0 % Energiedurchlassgrad : nein Vorhangfassade

Seitenwinkel: 0° Verbauungswinkel: 0° Überhangwinkel: 0° Verschattungswinkel F_f 1.000 Fh 1.000 F_o 1.000 Verschattungsfaktoren : Fs 0.900

: Fr 0.700 Rahmenverschattung Sonnenschutzverschattung : Fc 1.000

Bruttofläche

5.20 m² Anzahl: 1 Stück 2.60 m Breite: 2.00 m Höhe: 10.40 m² Anzahl: 4 Stück 1.00 m Hőhe: 2.60 m Breite:

> 15.60 m² Gesamtfensterfläche:

BAUTEIL 1.6 24KS + WD10-035 Wand Wohngebäude Kategorie

0.13 m2K/W Rsi 0.13 m2K/W Rse

Wand zum nicht beheizten Kellerraum ohne Perimeterdämmung Einsatzart

Kurzbez. lwWestMüli

Transmissions-Gewichtungsfaktor: 0.70 (Temperatur-Reduktionsfaktor)

0.275 W/m2K U-Wert 480.0 kg/m² Flächengewicht Bauteilorientierung

90.0° senkrecht Neigung -90.0° Westen Richtung

m² Flächenberechnung:

23.6 EG Breite 8.31 * Geschosshöhe 2.84 Fläche = 23.6

BAUTEIL 1.7 Dachgaubenwand Wand leicht Kategorie

0.13 m2K/W Rsi 0.04 m2K/W Rse

normale Außenwand beheizter Räume Einsatzart Strahlungsabsorptionsgrad α : 0.50 heller Anstrich (öffentlich rechtlich)

0.80 Emissionsgrad ε:

AwWestGaube Kurzbez.

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor) U-Wert : 0.223 W/m²K

Flächengewicht 84.8 kg/m²

Bauteilorientierung

90.0° senkrecht Neigung -90.0° Westen Richtung ==>

 m^2 Flächenberechnung:

6.8 _ DG Länge 1.54 * Höhe 2.2 * 2

29.7 DG Breite 3.0 * Höhe 2.2 * 0.5 * 9 Brutto-Bauteilfläche = 36.5 zugeordnete Fenster

W/m²K m² Type Firma 0.900 2.6 "ZERTIFIZIERT" zertifiziertes Fenster 0,9 2.6 Fensterfläche =

33.9 Netto-Bauteilfläche m² =

Lang Ingenieure GmbH + Co. KG 91320 Ebermannstadt Pretzfelder Straße 24 Telefon: 09194/7350 0 Fax: 09094/735040

) INGENIEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

BAUTEIL 2.12

· "ZERTIFIZIERT"

Glastype : zertifiziertes Fenster 0,9

U-Wert Fenster

0.90 W/m2K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad Vorhangfassade

48.0 % : nein

Verschattungswinkel

Verschattungsfaktoren Rahmenverschattung Sonnenschutzverschattung : Fs 0.900 : Fr 0.700 : Fc 1.000 Verbauungswinkel: 0° Fh 1.000 Überhangwinkel: 0°

Seitenwinkel: 0°

Fo 1.000

F_f 1.000

Bruttofläche

Breite:

1,00 m

Höhe:

1.30 m

Anzahl:

2 Stück

2.60 m²

Gesamtfensterfläche:

2 60 m²

BAUTEIL 1.8 Kategorie

17,5KS + WD18-035 Wand Wohngebäude

Rsi

0.13 m2K/W

Rse

0.04 m2K/W

Einsatzart

normale Außenwand beheizter Räume Strahlungsabsorptionsgrad α : 0.50 heller Anstrich (öffentlich rechtlich)

Emissionsgrad ε:

0.80

Kurzbez.

AwNord

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

U-Wert Flächengewicht 0.181 W/m²K 379.2 kg/m²

Bauteilorientierung

Neigung

90.0° senkrecht

Richtung

0.0° Norden

Flächenberechnung:

m²

53.8

 m^{2}

13.2

24.7

24.7

22.1

87.6

210.2

2.9

EG Länge 18.925 * Geschosshöhe 2.84 + DG Breite 0.45 * Höhe 0.4*0.5 erstesbisdrittesOG Länge 26.75 * Geschosshöhe 2.80 * 3 DG Breite 3.2 * Höhe 2.6 * 0.5 * 4 + Breite 1.86 * Höhe 2.8 * 0.5

224.7 19.2 Brutto-Bauteilfläche = 297.8

=

zugeordnete Fenster

Firma "ZERTIFIZIERT" "ZERTIFIZIERT" "ZERTIFIZIERT" "ZERTIFIZIERT"

zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 zertifiziertes Fenster 0,9 Haustür mit Fenster 1,2

W/m²K 0.900 0.900 0.900 0.900 1.200 Fensterfläche =

Netto-Bauteilfläche m² =

BAUTEIL 2.13

: "ZERTIFIZIERT"

Glastype

"TÜREN"

; zertifiziertes Fenster 0,9

U-Wert Fenster

: 0.90 W/m²K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad Vorhängfassade

48.0 % : nein

Verschattungswinkel

Verbauungswinkel: 0°

Überhangwinkel: 0°

Seitenwinkel: 0°

Verschattungsfaktoren

: Fs 0.900

Fo 1.000 Fh 1.000

F_f 1.000

Rahmenverschattung Sonnenschutzverschattung : Fr 0.700 : Fc 1.000

13.20 m²

Bruttofläche

Breite:

1.00 m

Höhe:

2.64 m

Anzahl:

5 Stück

==>

Gesamtfensterfläche:

13.20 m²

Lang Ingenieure GmbH + Co. KG 91320 Ebermannstadt Pretzfeider Straße 24 Telefon: 09194/7350 0 Fax: 09094/735040

Neubau ETW - Teil B

17.Jan 2022 14:02:33

BAUTEIL 2.14 : "ZERTIFIZIERT"

Glastype : zertifiziertes Fenster 0,9

U-Wert Fenster

0.90 W/m2K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad

Vorhängfassade

48.0 % : nein

Verschattungswinkel Verschattungsfaktoren Verbauungswinkel: 0° Fh 1.000

Überhangwinkel: 0°

Seitenwinkel: 0°

Rahmenverschattung Sonnenschutzverschattung

: Fs 0.900 Fr 0.700 : Fc 1.000 Fo 1.000

F_f 1.000

Bruttofläche

Breite: 1.00 m Breite: 1.00 m Höhe: Höhe:

Anzahl: 2.60 m 1.30 m Anzahi: 9 Stück 1 Stück ==>

23.40 m² 1.30 m²

Gesamtfensterfläche:

24.70 m²

BAUTEIL 2.15

Glastype

: "ZERTIFIZIERT"

: zertifiziertes Fenster 0,9

U-Wert Fenster

: 0.90 W/m²K inklusiv Rahmen (Herstellerangabe) 48.0 %

Energiedurchlassgrad Vorhangfassade

: nein

Verschattungswinkel Verschattungsfaktoren

: Fs 0.900

Verbauungswinkel: 0° Fh 1.000

Anzahl:

Überhangwinkel: 0°

Seitenwinkel: 0°

Fo 1.000

Fr 1.000

Rahmenverschattung Sonnenschutzverschattung : Fr 0.700 : Fc 1.000

2.60 m

9 Stück

23.40 m²

24.70 m²

Breite: Breite:

Bruttofläche

1.00 m 1.00 m Höhe: Höhe:

1.30 m

1 Stück Anzahl:

1.30 m²

Gesamtfensterfläche:

BAUTEIL 2.16

Glastype

: "ZERTIFIZIERT"

: zertifiziertes Fenster 0,9

U-Wert Fenster

: 0.90 W/m²K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad

: 48.0 %

Vorhangfassade

: nein

Verschattungswinkel

: Fs 0.900

Verschattungsfaktoren Rahmenverschattung

: Fr 0.700

Verbauungswinkel: 0° Fh 1.000

Fo 1.000

Überhangwinkel: 0°

Seitenwinkel: 0° Ff 1.000

Sonnenschutzverschattung : Fc 1.000

Bruttofläche

1.00 m Breite: Breite: 1.00 m Höhe: Höhe: 2.60 m 1.30 m Anzahl: Anzahl: 8 Stück 1 Stück ==> ==>

20.80 m²

Gesamtfensterfläche:

22.10 m²

1.30 m²

BAUTEIL 2.17

: "TÜREN"

Glastype

; Haustür mit Fenster 1,2

U-Wert Fenster

: 1.20 W/m²K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad

15.0 %

Vorhangfassade

: nein

Höhe:

Verschattungswinkel Verschattungsfaktoren

: Fs 0.900

Verbauungswinkel: 0°

Überhangwinkel: 0°

Seitenwinkel: 0°

Rahmenverschattung

1.25 m

: Fr 0.700

Fh 1.000

Fo 1.000

Ff 1,000

Sonnenschutzverschattung Bruttofläche

Breite:

: Fc 1.000

2.30 m

Anzahl:

1 Stück

==>

2.88 m²

Gesamtfensterfläche:

2.88 m²

Lang Ingenieure GmbH + Co. KG 91320 Ebermannstadt Pretzfelder Straße 24 Telefon: 09194/7350 0 Fax: 09094/735040

ANG DINGENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

17,5KS + WD18-035 BAUTEIL 1.9 Wand Wohngebäude Kategorie

0.13 m2K/W Rsi 0.04 m2K/W Rse

normale Außenwand beheizter Räume Einsatzart Strahlungsabsorptionsgrad α : 0.50 heller Anstrich (öffentlich rechtlich)

Emissionsgrad ε: 0.80 AwNordDG Kurzbez.

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)
U-Wert : 0.181 W/m²K

Flächengewicht 379.2 kg/m² Bautellorientierung

90.0° senkrecht Neigung ==> 0.0° Norden Richtung

Flächenberechnung:

m²

DG Breite 2.09 * Höhe 0.4

0.8 Fläche = 0.8

24KS + WD10-035 BAUTEIL 1.10 Kategorie Wand Wohngebäude

0.13 m2K/W Rsi 0.13 m2K/W Rse

Wand zum nicht beheizten Kellerraum ohne Perimeterdämmung Einsatzart

lwNordMüll Kurzbez.

Transmissions-Gewichtungsfaktor: 0.70 (Temperatur-Reduktionsfaktor)

U-Wert 0.275 W/m2K 480.0 kg/m² Flächengewicht

Bauteilorientierung

90.0° senkrecht Neigung ==> 0.0° Norden Richtung

Flächenberechnung:

m²

EG Länge 7.825 * Geschosshöhe 2.84

22.2

Fläche = 22.2

BAUTEIL 1.11 Dachgaubenwand Wand leicht Kategorie

0.13 m2K/W Rsi 0.04 m2K/W Rse

normale Außenwand beheizter Räume **Finsatzart** Strahlungsabsorptionsgrad α : 0.50 heller Anstrich (öffentlich rechtlich)

0.80 Emissionsgrad ε:

Kurzbez. AwNordGaube

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

0.223 W/m2K U-Wert 84.8 kg/m² Flächengewicht

Bauteilorientierung

90.0° senkrecht Neigung ==> 0.0° Norden Richtung

Flächenberechnung:

 m^2

DG Länge 1.54 * Höhe 2.2 * 8 DG Breite 3.0 * Höhe 2.2 * 0.5 * 9

27.1 29.7 Brutto-Bauteilfläche = 56.8

zugeordnete Fenster Firma

"ZERTIFIZIERT"

Type zertifiziertes Fenster 0.9

m² W/m²K 0.900 10.4 Fensterfläche = 10.4

Netto-Bauteilfläche m2 =

46.4

Neubau ETW - Teil B

17.Jan 2022 14:02:33

BAUTEIL 2.18

: "ZERTIFIZIERT"

: zertifiziertes Fenster 0,9 Glastype

U-Wert Fenster

: 0.90 W/m²K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad

48.0 %

Vorhangfassade

nein

Verschattungswinkel

Verbauungswinkel: 0° Fh 1.000 Überhangwinkel: 0°

Seitenwinkel: 0°

Verschattungsfaktoren Rahmenverschattung Sonnenschutzverschattung : Fs 0.900 : Fr 0.700 : Fc 1.000 Fo 1.000

Fr 1.000

Bruttofläche

Breite:

1.00 m

Höhe:

1.30 m

Anzanl:

8 Stück

10.40 m²

Gesamtfensterfläche:

10.40 m²

BAUTEIL 1.12 Kategorie

17,5KS + WD18-035 Wand Wohngebäude

Rsi

0.13 m2K/W

Rse

0.04 m2K/W

Einsatzart

normale Außenwand beheizter Räume Strahlungsabsorptionsgrad α : 0.50 heller Anstrich (öffentlich rechtlich)

Emissionsgrad ε:

0.80

Kurzbez.

AwOst

U-Wert

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

Flächengewicht

0.181 W/m2K 379.2 kg/m²

Bauteilorientierung

Neigung

90.0° senkrecht 90.0° Osten

Richtung Flächenberechnung:

m²

110.8

115.1

EG Breite 39.005 * Geschosshöhe 2.84 erstesbisdrittesOG Breite 39.005 * Geschosshöhe 2.80 * 3

= 327.6

DG Breite 1.065 * Höhe 2.8 * 0.5 + Breite 0.45 * Höhe 0.4 * 0.5

1.6 Brutto-Bauteilfläche = 440.0

zugeordnete Fenster Firma

Type zertifiziertes Fenster 0,9 "ZERTIFIZIERT" zertifiziertes Fenster 0,9 "ZERTIFIZIERT" zertifiziertes Fenster 0,9 "ZERTIFIZIERT" zertifiziertes Fenster 0,9 "ZERTIFIZIERT" Haustür mit Fenster 1,2 "TÜREN"

W/m²K m^2 0.900 26.4 28.6 0.900 0.900 28.6 0.900 28.6 1.200 2.9

=

Fensterfläche = Netto-Bauteilfläche m² = 324.9

BAUTEIL 2.19

: "ZERTIFIZIERT"

Glastype

: zertifiziertes Fenster 0,9

U-Wert Fenster

: 0.90 W/m²K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad

48.0 %

Vorhängfassade

: nein

Verschattungswinkel

Verbauungswinkel: 0°

Überhangwinkel: 0°

Seitenwinkel: 0°

Verschattungsfaktoren

: Fs 0.900

Fn 1.000

Fo 1.000

Ff 1.000

Rahmenverschattung Sonnenschutzverschattung : Fr 0.700 : Fc 1.000

Bruttofläche Breite:

Breite:

1.00 m 2.00 m

Höhe: Höhe:

2.64 m 2.64 m

4 Stück Anzahl: Anzahl: 3 Stück

==> ==> 10.56 m² 15.84 m²

Gesamtfensterfläche:

26.40 m²

17.Jan 2022 14:02:33 Neubau ETW - Teil B **BAUTEIL 2.20** : "ZERTIFIZIERT" Glastype : zertifiziertes Fenster 0,9 0.90 W/m²K inklusiv Rahmen (Herstellerangabe) U-Wert Fenster Energiedurchlassgrad 48.0 % Vorhängfassade : nein Seitenwinkel: 0° Verbauungswinkel: 0° Überhangwinkel: 0° Verschattungswinkel Fo 1.000 Fr 1.000 Fn 1.000 Fs 0.900 Verschattungsfaktoren Rahmenverschattung F_F 0.700 sommerlicher Sonnenschutz Fc=0.100 (Herstellerangabe) Sonnenschutzverschattung : Fc 1.000 Bruttofläche 10.40 m² Anzahl: 4 Stück Breite: 1.00 m Höhe: 2.60 m 15.60 m² ==> 2.60 m Anzani: 3 Stück Breite: 2.00 m Höhe: 2.60 m² Anzahi: 2 Stück ==> 1.00 m Höhe: 1.30 m Breite: Gesamtfensterfläche: 28.60 m² BAUTEIL 2.21 : "ZERTIFIZIERT" Glastype : zertifiziertes Fenster 0,9 0.90 W/m²K inklusiv Rahmen (Herstellerangabe) **U-Wert Fenster** 48.0 % Energiedurchlassgrad Vorhangfassade : nein Seitenwinkel: 0° Verbauungswinkel: 0° Überhangwinkel: 0° Verschattungswinkel Fh 1.000 Fo 1.000 Ff 1.000 : Fs 0.900 Verschattungsfaktoren Rahmenverschattung : Fr 0.700 Sonnenschutzverschattung : Fc 1.000 Bruttofläche 10.40 m² 4 Stück Breite: 1.00 m Hőhe: 2.60 m Anzahl: 15.60 m² ==> 2.00 m Höhe: 2.60 m Anzahl: 3 Stück Breite: 2.60 m² 2 Stück ==> 1.30 m Anzahl: 1.00 m Höhe : Breite: 28.60 m² Gesamtfensterfläche: · "ZFRTIFIZIERT" **BAUTEIL 2.22** Glastype : zertifiziertes Fenster 0,9 : 0.90 W/m²K inklusiv Rahmen (Herstellerangabe) U-Wert Fenster Energiedurchlassgrad : 48.0 % Vorhangfassade : nein Seitenwinkel: 0° Verbauungswinkel: 0° Überhangwinkel: 0° Verschattungswinkel Fo 1.000 F_f 1.000 Fh 1.000 : Fs 0.900 Verschattungsfaktoren Rahmenverschattung : Fr 0.700 Sonnenschutzverschattung : Fc 1.000 Bruttofläche 10.40 m² ==> 4 Stück 1.00 m Höhe: 2.60 m Anzahl: Breite: 15.60 m² 2.60 m Anzahi: 3 Stück ==> 2.00 m Höhe: Breite: 2 Stück ==> 2.60 m² Höhe: 1.30 m Anzahl: 1.00 m Breite: 28.60 m² Gesamtfensterfläche:

	1 I I I I I I I I I I I I I I I I I I I
BAUTEIL 2.23	: "TÜREN"
Glastype	: Haustür mit Fenster 1,2

U-Wert Fenster : 1.20 W/m²K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad : 15.0 % Vorhangfassade : nein

Verschattungswinkel:Verbauungswinkel: 0°Überhangwinkel: 0°Seitenwinkel: 0°Verschattungsfaktoren: Fs 0.900Fh 1.000Fo 1.000Fr 1.000Rahmenverschattung: Fr 0.700

Sonnenschutzverschattung : Fc 1.000

Bruttofläche
Breite: 1.25 m Höhe: 2.30 m Anzahl: 1 Stück ==> 2.88 m²

Gesamtfensterfläche: 2.88 m²

NGENIEURE ---

m²

m²

17.Jan 2022 14:02:33 Neubau ETW - Teil B

BAUTEIL 1.13 17.5KS + WD18-035 Wand Wohngebäude Kategorie

0.13 m2K/W Rsi 0.04 m2K/W Rse

normale Außenwand beheizter Räume Einsatzart Strahlungsabsorptionsgrad α : 0.50 heller Anstrich (öffentlich rechtlich)

Emissionsgrad ε: 0.80 **AwOstDG** Kurzbez.

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor) U-Wert : 0.181 W/m²K

379.2 kg/m² Flächengewicht Bautellorientierung

90.0° senkrecht Neigung Richtung ==> 90.0° Osten

Flächenberechnung:

33.5 DG Breite 12.895 * Höhe 2.60 DG Breite 2.09 * Höhe 0.40 0.8 Brutto-Bauteilfläche = 34.4

zugeordnete Fenster

W/m²K m² Type Firma 15.6 0.900 "ZERTIFIZIERT" zertifiziertes Fenster 0,9 Fensterfläche = 15.6

> Netto-Bauteilfläche m² = 18.8

BAUTEIL 2.24 : "ZERTIFIZIERT" : zertifiziertes Fenster 0,9 Glastype

0.90 W/m²K inklusiv Rahmen (Herstellerangabe) U-Wert Fenster

Energiedurchlassgrad 48.0 % Vorhangfassade : nein

Verschattungswinkel

Seitenwinkel: 0° Verbauungswinkel: 0° Überhangwinkel: 0° Ff 1.000 Fo 1.000 Verschattungsfaktoren : Fs 0.900 Fh 1.000 Rahmenverschattung : Fr 0.700

: Fc 1.000 Sonnenschutzverschattung

Bruttofläche

Anzahl: 3 Stück ==> 15.60 m² 2.00 m Höhe: 2.60 m Breite:

15.60 m² Gesamtfensterfläche:

24KS + WD10-035 **BAUTEIL 1.14** Kategorie Wand Wohngebäude

0.13 m2K/W Rsi 0.13 m2K/W Rse

Wand zum nicht beheizten Kellerraum ohne Perimeterdämmung Einsatzart

lwOstMüll Kurzbez.

Transmissions-Gewichtungsfaktor: 0.70 (Temperatur-Reduktionsfaktor) U-Wert : 0.275 W/m²K

U-Wert Flächengewicht 480.0 kg/m²

Bauteilorientierung

90.0° senkrecht Neigung 90.0° Osten Richtung

Flächenberechnung:

EG Breite 8.31 * Geschosshöhe 2.84 23.6

Brutto-Bauteilfläche = 23.6 zugeordnete Fenster

m² Type W/m²K Firma 2,000 2.9 Alutür gedämmt "TÜREN" 2.9 Fensterfläche =

> 20.7 Netto-Bauteilfläche m² =

Lang Ingenieure GmbH + Co. KG Pretzfelder Straße 24

Verbauungswinkel: 0°

91320 Ebermannstadt Telefon: 09194/7350 0 Fax: 09094/735040

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Seitenwinkel: 0°

BAUTEIL 2.25

: "TÜREN"

Glastype

: Alutür gedämmt

U-Wert Fenster

: 2.00 W/m2K inklusiv Rahmen

Energiedurchlassgrad Vorhangfassade

0.0 % : nein

Verschattungswinkel

: Fs 0.900

Verschattungsfaktoren Rahmenverschattung

: Fr 0.700

Sonnenschutzverschattung

: Fc 1.000

Bruttofläche

Breite:

1.25 m

Hähe:

2.30 m

Anzahl:

1 Stück

Fh 1.000

Fo 1.000

Überhangwinkel: 0°

2.88 m²

Fr 1.000

Gesamtfensterfläche:

2.88 m²

BAUTEIL 1.15 Kategorie

Dachgaubenwand

Wand leicht

Rsi

0.13 m2K/W

Rse

0.04 m2K/W

Einsatzart

normale Außenwand beheizter Räume

Strahlungsabsorptionsgrad α : 0.50 helier Anstrich (öffentlich rechtlich)

Emissionsgrad ε:

0.80

Kurzbez.

AwOstGaube

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

U-Wert

0.223 W/m2K 84.8 kg/m²

Flächengewicht Bauteilorientierung

Neigung Richtung 90.0° senkrecht

90.0° Osten

Flächenberechnung:

DG Länge 1.54 * Höhe 2.2 * 7

DG Breite 3.0 * Höhe 2.2 * 0.5 * 9

zugeordnete Fenster

Firma

"ZERTIFIZIERT"

Type zertifiziertes Fenster 0,9

W/m²K 0.900 Fensterfläche =

Brutto-Bauteilfläche =

m² 9.1 9.1

=

Netto-Bauteilfläche m² =

44.3

m²

23.7

29.7

53.4

BAUTEIL 2.26

: "ZERTIFIZIERT"

Glastype

: zertifiziertes Fenster 0,9

U-Wert Fenster

: 0.90 W/m²K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad

48.0 %

Vorhangfassade

nein

Verschattungswinkel Verschattungsfaktoren

Verbauungswinkel: 0° Fh 1.000 Überhangwinkel: 0°

Seitenwinkel: 0°

Rahmenverschattung

: Fs 0.900 : Fr 0.700

Fo 1.000

Ff 1.000

Sonnenschutzverschattung

sommerlicher Sonnenschutz : Fc 1.000

Verschattung 4108-2

: außenliegend: Jalousien, Rollläden 3/4 geschlossen, Fensterläden

Bruttofläche

Breite:

1.00 m

Höhe: 1.30 m

Anzahl:

7 Stück

==>

9.10 m²

Gesamtfensterfläche:

9.10 m²

LANG (S) INGENIEURE TINE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

25Beton + WD12-035 BAUTEIL 1.16

Kategorie

Wand massiv

Rsi

Rse

0.13 m2K/W

Einsatzart

0.13 m2K/W

Kurzbez.

Wand zum nicht beheizten Kellerraum ohne Perimeterdämmung

Transmissions-Gewichtungsfaktor: 0.70 (Temperatur-Reduktionsfaktor)

KwSüdKG

U-Wert Flächengewicht 0.260 W/m2K 671.8 kg/m²

Bauteilorientierung

Neigung Richtung 90.0° senkrecht

Flächenberechnung:

Länge 1.9 * Höhe 3.58 Länge 7.3 * Höhe 3.58

zugeordnete Fenster

Firma "TÜREN"

==> 180.0° Süden

Type Alutür gedämmt

Verbauungswinkel: 0°

4.3 Fensterfläche = Netto-Bauteilfläche m² =

Brutto-Bauteilfläche =

W/m²K

2.000

Überhangwinkel: 0°

28.7

m²

6.8

26.1

32.9

m²

4.3

BAUTEIL 2.27 Glastype

: "TÜREN" : Alutür gedämmt

U-Wert Fenster Energiedurchlassgrad 2.00 W/m2K inklusiv Rahmen

Vorhangfassade

: 0.0 % : nein

Verschattungswinkel Verschattungsfaktoren

: Fs 0.900

Rahmenverschattung Sonnenschutzverschattung : Fr 0.700 : Fc 1.000

Bruttofläche

Breite:

1.01 m

Höhe:

2.11 m

Anzahl:

2 Stück

Fh 1.000

==>

Fo 1.000

4.26 m²

Ff 1.000

Seitenwinkel: 0°

Gesamtfensterfläche:

4.26 m²

BAUTEIL 1.17

25Beton + WD12-035 Wand massiv

Kategorie

Rsi Rse 0.13 m2K/W

Einsatzart

0.04 m2K/W

Wand gegen offene kalte Räume (Garage, Durchfahrt,usw.) KwSüdTG

Kurzbez.

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

U-Wert

0.266 W/m2K 671.8 kg/m²

Flächengewicht

Bauteilorientierung

Neigung Richtung

90.0° senkrecht ==> 180.0° Süden

Flächenberechnung:

m²

Länge 10.6 * Höhe 3.58

Fläche ==

37.9 37.9

Neubau ETW - Teil B 17.Jan 2022 14:02:33

BAUTEIL 1.18 25Beton + WD12-035

Wand massiv Kategorie

Rsi 0.13 m2K/W 0.00 m²K/W Rse

Einsatzart erdberührende Außenwand beheizter Räume

AufzugunterfahrtSüd Kurzbez.

Transmissions-Gewichtungsfaktor: 0.60 (Temperatur-Reduktionsfaktor)

0.269 W/m2K **U-Wert** Flächengewicht 671.8 kg/m²

Bauteilorientierung

Neigung 90.0° senkrecht Richtung ==> 180.0° Süden

Flächenberechnung:

m²

Breite 2.55 * Höhe 0.65 1.7 Breite 2.55 * Höhe 1.0 2.5

Fläche = 4.2

BAUTEIL 1.19 25Beton + WD12-035

Kategorie Wand massiv

Rsi 0.13 m²K/W 0.13 m²K/W Rse

Einsatzart Wand zum nicht beheizten Kellerraum ohne Perimeterdämmung

Kurzbez. KwWestKG

Transmissions-Gewichtungsfaktor: 0.70 (Temperatur-Reduktionsfaktor)

0.260 W/m²K **U-Wert** Flächengewicht 671.8 kg/m²

Bauteilorientierung

Neigung 90.0° senkrecht ==> -90.0° Westen Richtung

Flächenberechnung:

m²

Breite 9.9 * Höhe 3.58 35.4 Länge 3.9 * Höhe 3.58 14.0 Brutto-Bauteilfläche = 49.4

zugeordnete Fenster

Firma "TÜREN" W/m²K m² Type Alutür gedämmt 2.000 4.3 Fensterfläche = 4.3

> Netto-Bauteilfläche m² = 45.1

BAUTEIL 2.28 : "TÜREN" Glastype : Alutür gedämmt

U-Wert Fenster 2.00 W/m2K inklusiv Rahmen

Energiedurchlassgrad : 0.0 % Vorhangfassade : nein

Verschattungswinkel Verbauungswinkel: 0°

Überhangwinkel: 0° Seitenwinkel: 0° Verschattungsfaktoren : Fs 0.900 Fh 1.000 F_o 1.000 Ff 1.000

Rahmenverschattung : F_F 0.700 Sonnenschutzverschattung : Fc 1.000

Bruttofläche

Breite: 1.01 m Höhe: 2.11 m Anzahl: 2 Stück ==> 4.26 m²

> Gesamtfensterfläche: 4.26 m²

LANG (8) INGENIEURE

m²

17.Jan 2022 14:02:33 Neubau ETW - Teil B

BAUTEIL 1.20 25Beton + WD12-035

Kategorie Wand massiv

0.13 m2K/W Rsi 0.04 m2K/W Rse

Wand gegen offene kalte Räume (Garage, Durchfahrt,usw.) Einsatzart

Kurzbez. KwWestTG

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

0.266 W/m2K U-Wert 671.8 kg/m² Flächengewicht

Bauteilorientierung

Neigung 90.0° senkrecht ==> -90.0° Westen Richtung

m² Flächenberechnung:

9.1 Breite 2.55 * Höhe 3.58 Fläche = 9.1

25Beton + WD12-035 BAUTEIL 1.21 Kategorie Wand massiv

Rsi 0.13 m2K/W 0.00 m2K/W Rse

erdberührende Außenwand beheizter Räume Einsatzart

AufzugunterfahrtWest Kurzbez.

Transmissions-Gewichtungsfaktor: 0.60 (Temperatur-Reduktionsfaktor)

0.269 W/m2K U-Wert Flächengewicht 671.8 kg/m² Bauteilorientierung

90.0° senkrecht Neigung ==> -90.0° Westen

Richtung Flächenberechnung:

Breite 2.55 * Höhe 1.0 Breite 2.55 * Höhe 0.65 = 2.5 1.7 4.2 Fläche =

BAUTEIL 1.22 25Beton + WD12-035 Kategorie Wand massiv

0.13 m2K/W Rsi Rse 0.13 m2K/W

Wand zum nicht beheizten Kellerraum ohne Perimeterdämmung Einsatzart

KwNordKG Kurzbez.

Transmissions-Gewichtungsfaktor: 0.70 (Temperatur-Reduktionsfaktor)

0.260 W/m2K U-Wert Flächengewicht 671.8 kg/m²

Bauteilorientierung

90.0° senkrecht Neigung ==> 0.0° Norden Richtung

m² Flächenberechnung: 9.4 Länge 4.45 * Höhe 2.115 == 28.8

Länge 8.05 * Höhe 3.58 Länge 7.3 * Höhe 3.58 26.1 Brutto-Bauteilfläche = 64.4

zugeordnete Fenster m² W/m²K Type Firma

Alutür gedämmt 2.000 4.3 "TÜREN" Fensterfläche = 4.3 Netto-Bauteilfläche m² = 60.1

LANG () INGENEURET

Seitenwinkel: 0°

Fr 1.000

4.26 m²

17.Jan 2022 14:02:33 Neubau ETW - Teil B

Verbauungswinkel: 0°

BAUTEIL 2.29 : "TÜREN" : Alutür gedämmt Glastype

U-Wert Fenster ; 2.00 W/m2K inklusiv Rahmen

: 0.0 % : nein Energiedurchlassgrad Vorhangfassade

Verschattungswinkel

Verschattungsfaktoren : Fs 0.900 Rahmenverschattung : Fr 0.700 : Fc 1.000

Sonnenschutzverschattung

Bruttofläche

2 Stück Anzahl: 1.01 m Höhe: 2.11 m Breite:

Gesamtfensterfläche: 4.26 m²

Fh 1.000

Überhangwinkel: 0°

F₀ 1.000

BAUTEIL 1.23 25Beton + WD12-035 Kategorie Wand massiv

0.13 m2K/W Rsi 0.04 m²K/W Rse

Einsatzart normale Außenwand beheizter Räume Strahlungsabsorptionsgrad α : 0.50 heller Anstrich (öffentlich rechtlich)

0.80 Emissionsgrad ε: KwNordAL Kurzbez.

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

U-Wert 0.266 W/m2K 671.8 kg/m² Flächengewicht

Bauteilorientierung

90.0° senkrecht Neigung 0.0° Norden Richtung

m² Flächenberechnung:

6.5 Länge 4.45 * Höhe 1.465 Fläche = 6.5

25Beton + WD12-035 **BAUTEIL 1.24** Kategorie Wand massiv

0.13 m2K/W Rsi 0.00 m2K/W Rse

erdberührende Außenwand beheizter Räume Einsatzart Kurzbez. AufzugunterfahrtNord

Transmissions-Gewichtungsfaktor: 0.60 (Temperatur-Reduktionsfaktor)
U-Wert : 0.269 W/m²K

U-Wert Flächengewicht 671.8 kg/m²

Bauteilorientierung

90.0° senkrecht Neigung ==> 0.0° Norden Richtung

m² Flächenberechnung:

Länge 2.55 * Höhe 1.0 Länge 2.55 * Höhe 1.0 = 2.5 2.5

Fläche = 5.1

) INGENIEURE

17.Jan 2022 14:02:33 Neubau ETW - Teil B

BAUTEIL 1.25 25Beton + WD12-035 Kategorie Wand massiv

0.13 m2K/W Rsi 0.13 m2K/W Rse

Wand zum nicht beheizten Kellerraum ohne Perimeterdämmung Einsatzart

Kurzbez. KwOstKG

Transmissions-Gewichtungsfaktor: 0.70 (Temperatur-Reduktionsfaktor)

0.260 W/m2K U-Wert 671.8 kg/m² Flächengewicht

Bauteilorientierung

90.0° senkrecht Neigung ==> 90.0° Osten Richtung

Flächenberechnung:

35.4

Länge 9.9 * Höhe 3.58 Länge 3.5 * Höhe 3.58

12.5 Brutto-Bauteilfläche = 48.0

2.000

zugeordnete Fenster

Type Firma Alutür gedämmt "TÜREN"

 m^2 W/m2K

Fensterfläche = 4.3 Netto-Bauteilfläche m² = 43.7

 m^2

4.3

: "TÜREN" BAUTEIL 2.30 Glastype : Alutür gedämmt

2.00 W/m²K inklusiv Rahmen U-Wert Fenster

Energiedurchlassgrad 0.0 % Vorhangfassade ; nein

Verschattungswinkel

Seitenwinkel: 0° Verbauungswinkel: 0° Überhangwinkel: 0° : Fs 0.900 Fo 1.000 Ff 1.000 Fh 1.000 Verschattungsfaktoren Rahmenverschattung ; Fr 0.700

Sonnenschutzverschattung : Fc 1.000

Bruttofläche

4.26 m² 2 Stück Breite: 1.01 m Höhe: 2.11 m Anzahl:

Gesamtfensterfläche: 4.26 m²

BAUTEIL 1.26 25Beton + WD12-035 Wand massiv

Kategorie

0.13 m2K/W Rsi Rse 0.04 m2K/W

normale Außenwand beheizter Räume Einsatzart Strahlungsabsorptionsgrad α : 0.50 heller Anstrich (öffentlich rechtlich)

Emissionsgrad ε:

0.80 KwOstAL

Kurzbez. Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)
U-Wert : 0.266 W/m²K

U-Wert Flächengewicht 671.8 kg/m²

Bauteilorientierung

90.0° senkrecht Neigung ==> 90.0° Osten Richtung

Flächenberechnung:

m²

4.3 Breite 2.95 * Höhe 1.465 Fläche = 4.3

Seite 37 von 72

Neubau ETW - Teil B 17.Jan 2022 14:02:33

BAUTEIL 1.27 : 25Beton + WD12-035 Kategorie : Wand massiv

Rsi : 0.13 m²K/W Rse : 0.00 m²K/W

Einsatzart : erdberührende Außenwand beheizter Räume

Kurzbez. : KwOstErde

Transmissions-Gewichtungsfaktor: 0.60 (Temperatur-Reduktionsfaktor) U-Wert : 0.269 W/m²K

U-Wert : 0.269 W/m²K Flächengewicht : 671.8 kg/m²

Bauteilorientierung

Neigung : 90.0° senkrecht
Richtung : ==> 90.0° Osten

Flächenberechnung:

m²

Breite 2.95 * Höhe 2.115

= 6.2 Fläche = 6.2

BAUTEIL 1.28 : 25Beton + WD12-035 Kategorie : Wand massiv

Rsi : 0.13 m²K/W

RSi : 0.13 m²K/W RSe : 0.00 m²K/W

Einsatzart : erdberührende Außenwand beheizter Räume

Kurzbez. : AufzugunterfahrtOst

Transmissions-Gewichtungsfaktor: 0.60 (Temperatur-Reduktionsfaktor)

U-Wert : 0.269 W/m²K Flächengewicht : 671.8 kg/m² Bauteilorientierung

Neigung : 90.0° senkrecht Richtung : ==> 90.0° Osten

Flächenberechnung:

m²

2.5

99.9

Länge 2.55 * Höhe 1.0

Länge 2.55 * Höhe 1.0

= Länge 2.55 * Höhe 1.0

= 2.5 Fläche = 5.1

Bauteile der Bauteilart: Decke zum Dachge., Dach

BAUTEIL 3.1 : 20Sparren + WD20-035 Kategorie : Dach Wohngebäude

Rsi : 0.10 m²K/W Rse : 0.04 m²K/W

Einsatzart : Dach/Decke gegen Außenluft Strahlungsabsorptionsgrad α : 0.50 ziegelrot (öffentlich rechtlich)

Emissionsgrad ε: 0.80 Kurzbez. : DaSüd

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

Der Schichtaufbau besitzt einen Feld- und Balkenbereich

Flächenanteilsberechnung des Feldes in %:

90 = 90.0 = 0.0

Feldanteil = 90.0 %

Brutto-Bauteilfläche =

ges.U-Wert = 0.211 W/m²K Feld U-Wert: 0.169 W/m²K (90.0%) Balken U-Wert: 0.571 W/m²K (10.0%) Flächengewicht : 70.7 kg/m²

Flächengewicht : Bauteilorientierung

Neigung : 49.6°

Richtung : ==> 180.0° Süden

Flächenberechnung:

 Länge 13.37 * Höhe 9.3 + Länge 6.69 * Höhe 9.3 * 0.5
 =
 155.4

 0 - Länge 6.65 * Höhe 4.2 - Länge 3.345 * Höhe 4.2 * 0.5
 =
 -35.0

 0 - Länge 1.54 * Höhe 3.7 - Länge 3.555 * Höhe 4.2
 =
 -20.6

zugeordnete Fenster

Firma Type W/m²K m²

"Dachfenster" zertifiziertes Dachfenster 0,9 0.900 3.0

Fensterfläche = 3.0

Netto-Bauteilfläche m² = 96.9

Lang Ingenieure GmbH + Co. KG 91320 Ebermannstadt Pretzfelder Straße 24

Fax: 09094/735040 Telefon: 09194/7350 0

Neubau ETW - Teil B

17.Jan 2022 14:02:33

BAUTEIL 2.31

: "Dachfenster"

Glastype

: zertifiziertes Dachfenster 0,9

U-Wert Fenster

: 0.90 W/m²K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad

Vorhangfassade

40.0 % : nein

Verschattungswinkel

: Fs 0.900

Verbauungswinkel: 0° Fh 1.000 Überhangwinkel: 0°

Seitenwinkel: 0°

Verschattungsfaktoren

: Fr 0.700

F_o 1.000

F_f 1.000

Rahmenverschattung Sonnenschutzverschattung : Fc 1.000

Bruttofläche

Breite:

0.95 m

Höhe:

1.05 m

Anzahl:

3 Stück

2.99 m²

Gesamtfensterfläche:

2.99 m²

BAUTEIL 3.2 Kategorie

20Sparren + WD20-035 Dach Wohngebäude

Rsi

0.10 m2K/W

Rse

0.04 m2K/W

Finsatzart

Dach/Decke gegen Außenluft Strahlungsabsorptionsgrad α : 0.50 ziegelrot (öffentlich rechtlich)

Emissionsgrad ϵ :

0.80

DaOst Kurzbez.

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

Der Schichtaufbau besitzt einen Feld- und Balkenbereich

Flächenanteilsberechnung des Feldes in %:

90

90.0 = 0.0

Feldanteil = 90.0 %

ges.U-Wert = 0.211 W/m2K

Feld U-Wert: 0.169 W/m2K (90.0%) 70.7 kg/m²

Balken U-Wert: 0.571 W/m²K (10.0%)

Flächengewicht

Bauteilorientierung

49.6°

Neigung Richtung

==> 90.0° Osten

Flächenberechnung:

m²

Länge 32.315 * Höhe 9.3 + Länge 6.69 * Höhe 9.3 * 0.5 0 - Länge 12.895 * Höhe 4.20 - Länge 2.09 * Höhe 0.4

0 - Länge 1.54 * Höhe 3.7 * 7

331.6 = = -55.0 -

Brutto-Bauteilfläche =

-39.9236.8

zugeordnete Fenster

Firma

Type Velux GGU SK06 RWA W/m²K

1.300

Fensterfläche =

m² 1.3 1.3

Netto-Bauteilfläche m2 =

235.4

BAUTEIL 2.32

Glastype

: Velux GGU SK06 RWA

U-Wert Fenster

: 1.30 W/m²K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad Vorhängfassade

63.0 %

: nein

Verschattungswinkel

Verbauungswinkel: 0°

Überhangwinkel: 0°

Seitenwinkel: 0°

Verschattungsfaktoren Rahmenverschattung

: Fs 0.900

Fh 1.000

Fo 1.000

Ff 1.000

Sonnenschutzverschattung

: Fr 0.700 : Fc 1.000

Bruttofläche

Breite:

1.18 m

Höhe:

1.14 m

Anzahl:

1 Stück

1.35 m²

Gesamtfensterfläche:

1.35 m²

Lang Ingenieure GmbH + Co. KG 91320 Ebermannstadt Pretzfelder Straße 24 Fax: 09094/735040 Telefon: 09194/7350 0

ANGE MENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

20Sparren + WD20-035 **BAUTEIL 3.3** Dach Wohngebäude Kategorie

Rsi

0.10 m2K/W

Rse

0.04 m2K/W

Einsatzart

Dach/Decke gegen Außenluft

Strahlungsabsorptionsgrad α : 0.50 ziegelrot (öffentlich rechtlich)

Emissionsgrad ϵ :

0.80

DaNord Kurzbez.

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

Der Schichtaufbau besitzt einen Feld- und Balkenbereich

Flächenanteilsberechnung des Feldes in %:

90.0 0.0

Feld U-Wert: 0.169 W/m2K (90.0%)

Feldanteil = Balken U-Wert: 0.571 W/m2K (10.0%)

ges.U-Wert = 0.211 W/m2K Flächengewicht

70.7 kg/m²

Bauteilorientierung

49.6°

Neigung Richtung

==> 0.0° Norden

Flächenberechnung:

m² 217.7

90.0 %

Länge 20.06 * Höhe 9.3 + Länge 6.69 * Höhe 9.3 * 0.5

-0.8 -45.6

0 - Länge 2.09 * Höhe 0.4 0 - Länge 1.54 * Höhe 3.7 * 8

Brutto-Bauteiifläche = 171.2

=

=

zugeordnete Fenster

Firma

Type

W/m²K

Velux GGU SK06 RWA

1.300 Fensterfläche =

 m^2 1.3 1.3

Netto-Bauteilfläche m² = 169.9

BAUTEIL 2.33

Glastype

: Velux GGU SK06 RWA

U-Wert Fenster

: 1.30 W/m²K inklusiv Rahmen (Herstellerangabe)

Energiedurchlassgrad

63.0 %

Vorhangfassade

: nein

Höhe:

Verschattungswinkel

: Fs 0.900

Verbauungswinkel: 0°

Anzahl:

Überhangwinkel: 0°

Seitenwinkel: 0°

Verschattungsfaktoren Rahmenverschattung

1.18 m

: FF 0.700

Fh 1.000

1 Stück

Fa 1.000

Ff 1.000

Sonnenschutzverschattung Bruttofläche

Breite:

: Fc 1.000

1.14 m

1.35 m²

Gesamtfensterfläche:

==>

1.35 m²

INGENIEURE'

Neubau ETW - Teil B

17.Jan 2022 14:02:33

BAUTEIL 3.4 20Sparren + WD20-035 Dach Wohngebäude Kategorie

Rsi 0.10 m²K/W 0.04 m²K/W Rse

Dach/Decke gegen Außenluft Finsatzart Strahlungsabsorptionsgrad α : 0.50 ziegelrot (öffentlich rechtlich)

Emissionsgrad ε: 0.80 Kurzbez. DaWest

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

Der Schichtaufbau besitzt einen Feld- und Balkenbereich

Flächenanteilsberechnung des Feldes in %:

90.0 0.0

90.0 % Feldanteil =

Balken U-Wert: 0.571 W/m2K (10.0%) ges.U-Wert = 0.211 W/m²K Feld U-Wert: 0.169 W/m2K (90.0%)

70.7 kg/m² Flächengewicht

Bauteilorientierung

49.6° Neigung

==> -90.0° Westen Richtung

m² Flächenberechnung:

229.5 Länge 21.33 * Höhe 9.3 + Länge 6.69 * Höhe 9.3 * 0.5 = 0 - Länge 9.485 * Höhe 4.2 - Länge 3.345 * Höhe 4.2 * 0.5 0 - Länge 1.54 * Höhe 3.7 * 2 - Länge 3.64 * Höhe 4.2 = -46.9 -26.7 Fläche = 155.9

BAUTEIL 3.5 16Sparren + WD16-035 Dach Wohngebäude Kategorie

0.10 m²K/W Rsi Rse 0.04 m²K/W

Dach/Decke gegen Außenluft Einsatzart Strahlungsabsorptionsgrad α : 0.50 ziegelrot (öffentlich rechtlich)

0.80 Emissionsgrad ε:

Kurzbez. GaubeSüd

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

Der Schichtaufbau besitzt einen Feld- und Balkenbereich

Flächenanteilsberechnung des Feldes in %:

90.0 90 0.0 Feldanteil = 90.0 %

Balken U-Wert: 0.693 W/m2K (10.0%) ges.U-Wert = 0.260 W/m2K Feld U-Wert: 0.209 W/m2K (90.0%)

59.3 kg/m² Flächengewicht

Bauteilorientierung

Neigung 2.0°

180.0° Süden Richtung ==>

m² Flächenberechnung:

4.6 = Länge 1.54 * Höhe 3.0 25.0 =

Länge 6.65 * Höhe 3.0 * 1 + Länge 3.345 * Höhe 3.0 * 0.5 Fläche = 29.6

INGENIEURE*

Neubau ETW - Teil B

17.Jan 2022 14:02:33

90.0

BAUTEIL 3.6 16Sparren + WD16-035 Dach Wohngebäude Kategorie

Rsi 0.10 m²K/W 0.04 m²K/W Rse

Dach/Decke gegen Außenluft **Finsatzart** Strahlungsabsorptionsgrad α : 0.50 ziegelrot (öffentlich rechtlich)

Emissionsgrad ϵ :

0.80 GaubeWest

Kurzbez.

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

Der Schichtaufbau besitzt einen Feld- und Balkenbereich

Flächenanteilsberechnung des Feldes in %:

0.0 90.0 % Feldanteil =

Balken U-Wert: 0.693 W/m2K (10.0%)

ges.U-Wert = 0.260 W/m²K 59.3 kg/m² Flächengewicht

Bauteilorientierung

2.0° Neigung

==> -90.0° Westen Richtung

m² Flächenberechnung:

Feld U-Wert: 0.209 W/m2K (90.0%)

32.3 Länge 1.54 * Höhe 3.0 * 7 Fläche = 32.3

BAUTEIL 3.7 16Sparren + WD16-035 Dach Wohngebäude Kategorie

0.10 m²K/W Rsi 0.04 m²K/W Rse

Dach/Decke gegen Außenluft Einsatzart Strahlungsabsorptionsgrad α : 0.50 ziegelrot (öffentlich rechtlich)

0.80 Emissionsgrad ε: GaubeNord Kurzbez.

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

Der Schichtaufbau besitzt einen Feld- und Balkenbereich

Flächenanteilsberechnung des Feldes in %:

90.0 90 0.0 90.0 %

Feldanteil = Balken U-Wert: 0.693 W/m2K (10.0%)

Feld U-Wert: 0.209 W/m2K (90.0%) ges.U-Wert = 0.260 W/m2K

Flächengewicht 59.3 kg/m²

Bauteilorientierung

2.0° Neigung

==> 0.0° Norden Richtung

m² Flächenberechnung:

37.0 Länge 1.54 * Höhe 3.0 * 8 Fläche = 37.0

Neubau ETW - Teil B

17.Jan 2022 14:02:33

16Sparren + WD16-035 **BAUTEIL 3.8** Dach Wohngebäude Kategorie

Rsi

0.10 m²K/W

Rse Einsatzart 0.04 m2K/W

Dach/Decke gegen Außenluft Strahlungsabsorptionsgrad α : 0.50 ziegelrot (öffentlich rechtlich)

Emissionsgrad ε:

0.80

Kurzbez.

GaubeOst

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

Der Schichtaufbau besitzt einen Feld- und Balkenbereich

Flächenanteilsberechnung des Feldes in %:

90.0 0.0

Feldanteil = Balken U-Wert: 0.693 W/m2K (10.0%)

ges.U-Wert = 0.260 W/m2K Flächengewicht

Feld U-Wert: 0.209 W/m²K (90.0%) 59.3 kg/m²

Bauteilorientierung

Neigung Richtung 2.0°

==> 90.0° Osten

Flächenberechnung:

m²

90.0 %

Länge 1.54 * Höhe 3.0 * 2

9.2 =

Länge 9.485 * Höhe 3.0 + Länge 3.345 * Höhe 3.0 * 0.5

= 33.5 Fläche = 42.7

BAUTEIL 3.9

20Beton-Terrasse+WD15-035

Kategorie

Dach, Flachdach 0.10 m²K/W

Rsi

0.04 m²K/W

Rse Einsatzart

Dach/Decke gegen Außenluft Strahlungsabsorptionsgrad α : 0.50 ziegelrot (öffentlich rechtlich)

Emissionsgrad ε:

0.80

Kurzbez. Dachterrasse

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)

U-Wert Flächengewicht 0.221 W/m²K 482.5 kg/m²

Bauteilorientierung

Neigung

0.0° waagerecht

Richtung

Flächenberechnung:

11.5

m²

11.5

= 15.5

4.5 + 6 + 5

6

= 6.0 Fläche = 33.0

20Stb+WD7-035+2-040 Grundfläche, Kellerdecke

Kategorie

BAUTEIL 3 10

RSe

Rsi

0.10 m²K/W

Einsatzart

0.10 m2K/W

Kurzbez.

Decke gegen geschlossenen unbeheizten Raum, Wärmestrom nach oben Müllraumboden

Transmissions-Gewichtungsfaktor: 0.50 (Temperatur-Reduktionsfaktor) U-Wert : 0.352 W/m²K

Flächengewicht

621.2 kg/m²

Bauteilorientierung

Neigung Richtung 0.0° waagerecht

Flächenberechnung:

m²

12.0 Fläche = 12.0

12

Seite 43 von 72

) INGENIEURE

17.Jan 2022 14:02:33 Neubau ETW - Teil B

Bauteile der Bauteilart: Grundfläche, Kellerdecke

BAUTEIL 4.1 30Stb+WD10-040+2-040 Grundfläche Wohngebäude Kategorie

Rsi 0.17 m2K/W 0.00 m2K/W Rse

Kellergrundfläche beheizter Räume im Erdreich Einsatzart

Grundfläche Kurzbez.

 $B'=A_{G}/(0,5P)$ 2.4 m

Transmissions-Gewichtungsfaktor: 0.45 (Temperatur-Reduktionsfaktor) U-Wert : 0.299 W/m²K

851.2 kg/m² Flächengewicht

Bauteilorientierung

Neigung 0.0° waagerecht

Richtung

m² Flächenberechnung:

29.2 29.2 = 28.4 28.4 32.0 32 89.6 Fläche =

BAUTEIL 4.2 20Stb+WD7-035+2-040 Grundfläche, Kellerdecke Kategorie

0.17 m2K/W Rse 0.17 m2K/W

Decke über nicht beheizten Kellerraum ohne Perimeterdämmung Einsatzart

Kellerdecke Kurzbez. $B'=A_G/(0,5P)$ 7.1 m

Transmissions-Gewichtungsfaktor: 0.65 (Temperatur-Reduktionsfaktor)

U-Wert 0.336 W/m2K 621.2 kg/m² Flächengewicht

Bauteilorientierung

0.0° waagerecht Neigung

Richtung

m² Flächenberechnung:

363.5 = 363.5 -77.6 0 - (89.6 - 12) Fläche = 285.9

20Stb+WD10-035+7-035+2-040 **BAUTEIL 4.3** Kategorie Grundfläche, Kellerdecke

Rsi 0.17 m2K/W 0.17 m²K/W Rse

Decke über nicht beheizten Kellerraum ohne Perimeterdämmung Einsatzart

Müllraumdecke Kurzbez.

 $B'=A_G/(0.5P)$ 7.1 m

Transmissions-Gewichtungsfaktor: 0.65 (Temperatur-Reduktionsfaktor) U-Wert : 0.171 W/m²K

624.2 kg/m² Flächengewicht

Bauteilorientierung

0.0° waagerecht

Neigung Richtung

m² Flächenberechnung:

54.0 54 Fläche = 54.0

17.Jan 2022 14:02:33 Neubau ETW - Teil B

Bauteile der Bauteilart: Decke gegen Außenluft unten

20Stb+TOP10-035+7-035+2-040 BAUTEIL 5.1

Kategorie Grundfläche, Kellerdecke

Rsi Rse 0.17 m²K/W 0.04 m²K/W

Einsatzart

Decke gegen Außenluft unten

Kurzbez.

Tiefgaragendecke

Transmissions-Gewichtungsfaktor: 1.00 (Temperatur-Reduktionsfaktor)
U-Wert : 0.175 W/m²K U-Wert

Flächengewicht

624.2 kg/m²

Bauteilorientierung Neigung

0.0° waagerecht

Richtung

Flächenberechnung:

m²

242.5

242.5 Fläche = 242.5

Volumenberechnung des Gebäudes

KG: 89.6 * Höhe 3.58

EG: 606.0 * Höhe 2.84

erstesbisdrittesOG: 660.0 * Höhe 2.8 * 3

DG: 627.5 * Höhe 5.87 * 0.5

320.8 m³ = 1721.0 m³ =

5544.0 m³ 1841.7 m³

9427.5 m³

Materialliste der thermischen Gebäudehülle

Material	Dichte kg/m³	Dicke mm	λ w/mK	Fläche m²	Gewicht kg
Kalkgipsputz	1400.0	15.00	0.7000	1487.88	31245
Kalkzementputz	1800.0	20.00	0.8700	833.98	30023
Zementestrich	2000.0	50.00	1.4000	89.60	8960
Zementestrich	2000.0	60.00	1.4000	594.40	71328
Beton normal DIN 1045	2400.0	200.00	2.1000	33.00	15840
Beton normal DIN 1045	2500.0	200.00	2.1000	594.40	297200
Beton normal DIN 1045	2500.0	250.00	2.1000	260.40	162750
Beton normal DIN 1045	2500.0	300.00	2.1000	89.60	67200
Gipskarton DIN 18180	900.0	15.00	0.2100	799.72	10796
Gipskarton DIN 18180	900.0	20.00	0.2100	156.38	2815
Kalksandstein DIN 106	1800.0	240.00	0.5000	66.55	28749
Kalksandstein DIN 106	1800.0	175.00	0.9900	833.98	262704
Dämmung	30.0	100.00	0.0350	54.00	162
Mineralwolle 035	250.0	160.00	0.0350	127.44	5098
Mineralwolle 035	250.0	200.00	0.0350	592.31	29615
Mineralwolle 040	250.0	160.00	0.0400	156.38	6255
Polystyrolhartschaum 025	60.0	100.00	0.0350	66.55	399
Polystyrolhartschaum 035	0.0	70.00	0.0350	594.40	0
Polystyrolhartschaum 035	0.0	150.00	0.0350	33.00	0
Polystyrolhartschaum 035	40.0	180.00	0.0350	833.98	6005
Polystyrolhartschaum 040	0.0	100.00	0.0400	89.60	0
TopDec DP3 WLG035	30.0	100.00	0.0350	242.50	728
Holz (Fichte, Kiefer, Tanne)	600.0	160.00	0.1300	14.16	1359
Holz (Fichte, Kiefer, Tanne)	600.0	200.00	0.1300	65.81	7897
Spanplatte(Strangpreß) 68764	700.0	19.00	0.1700	312.77	4160
Abdichtung	10.0	10.00	50.0000	33.00	3
Bitumendachbahn DIN 52128	1200.0	2.00	0.1700	33.00	79
Dampfsperre PE-Folie	1100.0	0.20	0.2000	684.00	150
PE-Folie my*s=20m	1100.0	0.20	0.3000	156.38	34
PE-Folie my*s=50m	1100.0	0.20	0.3000	799.72	176
Perimeterdämmung 035	40.0	120.00	0.0350	260.40	1250
Trittschalldämmung	50.0	20.00	0.0400	684.00	684
Summe				11673.29	1053666

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Schichtaufbau und U-Werte der verwendeten Bauteile

17,5KS + WD18-035				83	33.98 m²	U-Wert =	0.181 W/m²K
Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
uftübergang Warmseite Rsi 0.13 Kalkgipsputz		1400.0	15.00	0.700	0.021	10	
Kalksandstein DIN 106		1800.0	175.00	0.990	0.177	15 / 25	
Polystyrolhartschaum 035		40.0	180.00	0.035	5,143	35	
Kalkzementputz	D	1800.0	20.00	0.870	0.023	15 / 35	
uftübergang Kaltseite Rse 0.04							Warmseite
Bauteildicke = 390.00 mm	Flächenge	wicht = 379.:	2 kg/m²	R =	= 5,36 m²K/W		× ×

Wärmedurchgangsberechnung

Berechnete Daten:

Wärmedurchlaßwiderstand R 5.36 [m²K/W] Wärmedurchgangswiderstand RT 5.53 [m²K/W]

Wärmedurchgangskoeffizient U-Wert 0.18 [W/m²K]

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2013-2 Tabelle 3, normale Bauteile (>=100kg/m²):

Einsatzart: normale Außenwand beheizter Räume

zur Berechnung herangezogenes Flächengewicht : 379.2 kg/m²
R an der ungünstigsten Stelle : 5.364 m²K/W
Grenzwert (Mindestwert) für R : 1.200 m²K/W

die Anforderungen sind nach DIN 4108-2:2013-2 erfüllt

Randbedingungen der Dampfdiffusion

	Warmseite		Kaltseite
Tauperiode: Lufttemperatur relative Feuchte Dauer der Tauperiode	20.0 °C 50.0 % 2160 Stunden		-5.0 °C 80.0 %
Verdunstungsperiode: Dampfdruck Dampfdruck Ausfallstelle Dauer der Verdunstungsperiode	1200 Pa 2160 Stunden	1700 Pa	1200 Pa

das Bauteil wird als Wand berechnet.

Ergebnis der Dampfdiffusionsberechnung

Falluntersuchung nach DIN 4108 ergab: FALL A

Aufbau ist OK. Kein Tauwasserausfall

µ*d an den Schichtgrenzen:

Nr.	Material	DIN	μ1/μ2	μ	μ*d [m]	Summe µ*s
1	Kalkgipsputz	D	μ1	10	0.150	0.150
2	Kalksandstein DIN 106		μ1	15	2.625	2.775
3	Polystyrolhartschaum 035		μ1	35	6.300	9.075
4	Kalkzementputz		μ1	15	0.300	9.375

LANG NGENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Grenzschicht	Tauperiode Temperatur [°C]	Tauperiode Dampfdruck [Pa]	Verdunstungsperiode Temperatur [°C]	Verdunstungsperiode Dampfdruck [Pa]
Warmseite	20.0	2338	12.0	1404
1	19.4	2255	12.0	1404
1/2	19.3	2241	12.0	1404
2/3	18.5	2132	12.0	1404
3/4	-4.7	412	12.0	1404
4	-4.8	408	12.0	1404
Kaltseite	-5.0	402	12.0	1404

LANG INGENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Dichte Dicke λ R Diff Wid.	Dachgaubenwand				15	56.38 m²	U-Wert = 0.223 W/m²k	
3 PE-Folie my*s=20m D 1100.0 0.20 0.300 0.001 100000 4 Mineralwolle 040 D 250.0 160.00 0.040 4.000 1 5 Spanplatte(Strangpreß) 68764 D 700.0 19.00 0.170 0.112 20					λ [W/mK]		Diff Wid.	
3 PE-Folie my*s=20m D 1100.0 0.20 0.300 0.001 100000 4 Mineralwolle 040 D 250.0 160.00 0.040 4.000 1 5 Spanplatte(Strangpreß) 68764 D 700.0 19.00 0.170 0.112 20	uftübergang Warmseite Rsi 0.13	ח	900.0	20.00	0.210	0.095	8	
3 PE-Folie my*s=20m D 1100.0 0.20 0.300 0.001 100000 4 Mineralwolle 040 D 250.0 160.00 0.040 4.000 1 5 Spanplatte(Strangpreß) 68764 D 700.0 19.00 0.170 0.112 20						+	20	
4 Mineralwolle 040 D 250.0 160.00 0.040 4.000 1 8 5 Spanplatte(Strangpreß) 68764 D 700.0 19.00 0.170 0.112 20							100000	
5 Spanplatte(Strangpreß) 68764 D 700.0 19.00 0.170 0.112 20						4.000	1	ig ig
			700.0	19.00	0.170	0.112	20	asm mse
								War
Bauteildicke = 218.20 mm Flächengewicht = 84.8 kg/m² R = 4.32 m²K/W	Bauteildicke = 218.20 mm	Flächenge	wicht = 84.8	kg/m²	R=	= 4.32 m²K/W	•	

Wärmedurchgangsberechnung

Berechnete Daten:

Wärmedurchlaßwiderstand R

Wärmedurchgangswiderstand R

4.32 [m²K/W]

4.49 [m²K/W]

Wärmedurchgangskoeffizient U-Wert 0.22 [W/m²K]

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2013-2 leichte Bauteile (<100kg/m²):

der Wärmeduchlasswiderstand des gesamten Bauteils wurde zur Überprüfung verwendet zur Berechnung herangezogenes Flächengewicht : 84.8 kg/m² R an der ungünstigsten Stelle : 4.319 m²K/W Grenzwert (Mindestwert) für R : 1.750 m²K/W

die Anforderungen sind nach DIN 4108-2:2013-2 erfüllt

Randbedingungen der Dampfdiffusion

	Warmseite		Kaltseite
Tauperiode: Lufttemperatur relative Feuchte Dauer der Tauperiode	20.0 °C 50.0 % 2160 Stunden		-5.0 °C 80.0 %
Verdunstungsperiode: Dampfdruck Dampfdruck Ausfallstelle Dauer der Verdunstungsperiode	1200 Pa 2160 Stunden	1700 Pa	1200 Pa

das Bauteil wird als Wand berechnet.

Ergebnis der Dampfdiffusionsberechnung

Falluntersuchung nach DIN 4108 ergab: FALL A

Aufbau ist OK. Kein Tauwasserausfall

μ*d an den Schichtgrenzen:

Nr.	Material	DIN	μ1/μ2	μ	μ*d [m]	Summe µ*s
1	Gipskarton DIN 18180	םםםםם	μ1	8	0.160	0.160
2	Spanplatte(Strangpreß) 68764		μ1	20	0.380	0.540
3	PE-Folie my*s=20m		μ1	100000	20.000	20.540
4	Mineralwolle 040		μ1	1	0.160	20.700
5	Spanplatte(Strangpreß) 68764		μ1	20	0.380	21.080

LANG INGENIEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Grenzschicht	Tauperiode Temperatur [°C]	Tauperiode Dampfdruck [Pa]	Verdunstungsperiode Temperatur [°C]	Verdunstungsperiode Dampfdruck [Pa]
Warmseite	20.0	2338	12.0	1404
1	19.3	2236	12.0	1404
1/2	18.7	2163	12.0	1404
2/3	18.1	2080	12.0	1404
3/4	18.1	2080	12.0	1404
4/5	-4.2	432	12.0	1404
5	-4.8	410	12.0	1404
Kaltseite	-5.0	402	12.0	1404

LANG INGENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

24KS + WD10-035					3.55 m²	U-Wert =	: 0.275 W/m²K
Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 0.13 1 Kalkgipsputz		1400.0	15.00	0.700	0.021	10	
2 Kalksandstein DIN 106	D	1800.0	240.00	0.500	0.480	5 / 25	
3 Polystyroihartschaum 025		60.0	100.00	0.035	2.857	35	
4 Kalkgipsputz	D	1400.0	15.00	0.700	0.021	10	Warmseite
Luftübergang Kaltseite Rse 0.13							E
Bauteildicke = 370.00 mm	Flächengev	wicht = 480.	0 kg/m²	R =	= 3.38 m²K/W		×

Wärmedurchgangsberechnung

Berechnete Daten:

Wärmedurchlaßwiderstand R 3.38 [m²K/W]
Wärmedurchgangswiderstand RT 3.64 [m²K/W]

Wärmedurchgangskoeffizient U-Wert 0.27 [W/m²K]

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2013-2 Tabelle 3, normale Bauteile (>=100kg/m²):

Einsatzart: Wand zum nicht beheizten Kellerraum ohne Perimeterdämmung zur Berechnung herangezogenes Flächengewicht : 480.0 kg/m² R an der ungünstigsten Stelle : 3.380 m²K/W Grenzwert (Mindestwert) für R : 1.200 m²K/W

die Anforderungen sind nach DIN 4108-2:2013-2 erfüllt

Randbedingungen der Dampfdiffusion

	Warmseite		Kaltseite
Tauperiode: Lufttemperatur relative Feuchte Dauer der Tauperiode	20.0 °C 50.0 % 2160 Stunden		12.0 °C 80.0 %
Verdunstungsperiode: Dampfdruck Dampfdruck Ausfallstelle Dauer der Verdunstungsperiode	1200 Pa 2160 Stunden	1700 Pa	1200 Pa

das Bauteil wird als Wand berechnet.

Ergebnis der Dampfdiffusionsberechnung

Falluntersuchung nach DIN 4108 ergab: FALL A

Aufbau ist OK. Kein Tauwasserausfall

μ*d an den Schichtgrenzen:

Nr.	Material	DIN	μ1/μ2	Н	μ*d [m]	Summe µ*s
2	Kalkgipsputz Kalksandstein DIN 106 Polystyrolhartschaum 025 Kalkgipsputz	D D	μ1 μ1 μ1 μ1	10 5 35 10	0.150 1.200 3.500 0.150	0.150 1.350 4.850 5.000

LANG INGENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Grenzschicht	Tauperiode Tauperiode Verdunstungsperiode Temperatur [°C] Dampfdruck [Pa] Temperatur [°C]		Verdunstungsperiode Dampfdruck [Pa]	
Warmseite	20.0	2338	12.0	1404
1	19.7	2297	12.0	1404
1/2	19.7	2291	12.0	1404
2/3	18.6	2145	12.0	1404
3/4	12.3	1435	12.0	1404
4	12.3	1430	12.0	1404
Kaltseite	12.0	1404	12.0	1404

Telefon: 09194/7350 0 Fax: 09094/735040

Neubau ETW - Teil B

17.Jan 2022 14:02:33

25Beton + WD12-035					77.63 m²	3 m ² U-Wert = 0.260 W	
Material	1,200	Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
uftübergang Warmseite Rsi 0.13 Kalkgipsputz		1400.0	15.00	0.700	0.021	10	
Beton normal DIN 1045	D	2500.0	250.00	2.100	0.119	70 / 150	
Perimeterdämmung 035		40.0	120.00	0.035	3.429	50	
Kalkgipsputz .uftübergang Kaltseite Rse 0.13	D	1400.0	15.00	0.700	0.021	10	Warmseite
Bauteildicke = 400.00 mm	Flächengev	wicht = 671.	8 kg/m²	R=	= 3.59 m²K/W	,	×

Wärmedurchgangsberechnung

Berechnete Daten:

3.59 [m2K/W] Wärmedurchlaßwiderstand R 3.85 [m2K/W] Wärmedurchgangswiderstand RT

Wärmedurchgangskoeffizient U-Wert 0.26 [W/m2K]

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2013-2 Tabelle 3, normale Bauteile (>=100kg/m²):

Wand zum nicht beheizten Kellerraum ohne Perimeterdämmung Einsatzart: zur Berechnung herangezogenes Flächengewicht 3.590 m²K/W R an der ungünstigsten Stelle m²K/W : 1.200 Grenzwert (Mindestwert) für R

die Anforderungen sind nach DIN 4108-2:2013-2 erfüllt

Randbedingungen der Dampfdiffusion

	Warmseite		Kaltseite
Tauperiode: Lufttemperatur relative Feuchte Dauer der Tauperiode	20.0 °C 50.0 % 2160 Stunden		12.0 °C 80.0 %
Verdunstungsperiode: Dampfdruck Dampfdruck Ausfallstelle Dauer der Verdunstungsperiode	1200 Pa 2160 Stunden	1700 Pa	1200 Pa

das Bauteil wird als Wand berechnet.

Ergebnis der Dampfdiffusionsberechnung

Falluntersuchung nach DIN 4108 ergab: FALL A

Aufbau ist OK. Kein Tauwasserausfall

µ*d an den Schichtgrenzen:

Nr.	Material	DIN	μ1/μ2	μ	μ*d [m]	Summe µ*s
2 3	Kalkgipsputz Beton normal DIN 1045 Perimeterdämmung 035 Kalkgipsputz	D D	μ1 μ1 μ1 μ1	10 70 50 10	0.150 17.500 6.000 0.150	0.150 17.650 23.650 23.800

LANG NGENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Grenzschicht	Tauperiode Tauperiode Temperatur [°C] Dampfdruck [Pa]		Verdunstungsperiode Temperatur [°C]	Verdunstungsperiode Dampfdruck [Pa]
Warmseite	20.0	2338	12.0	1404
1	19.7	2299	12.0	1404
1/2	19.7	2293	12.0	1404
2/3	19.4	2258	12.0	1404
3/4	12.3	1433	12.0	1404
4	12.3	1429	12.0	1404
Kaltseite	12.0	1404	12.0	1404

Telefon: 09194/7350 0 Fax: 09094/735040

Neubau ETW - Teil B

17.Jan 2022 14:02:33

25Beton + WD12-035					7.92 m²	U-Wert =	0.266 W/m²K
Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid,	
uftübergang Warmseite Rsi 0.13 Kalkgipsputz		1400.0	15.00	0.700	0.021	10	
Beton normal DIN 1045	D	2500.0	250.00	2.100	0.119	70 / 150	
Perimeterdämmung 035	_	40.0	120.00	0.035	3.429	50	
Kalkgipsputz	D	1400.0	15.00	0.700	0.021	10	
uftübergang Kaltseite Rse 0.04							Warmseite
Bauteildicke = 400.00 mm	Flächenge	wicht = 671.	8 kg/m²	R=	3.59 m²K/W	•	Š \
	J		-				

Wärmedurchgangsberechnung

Berechnete Daten:

3.59 [m2K/W] Wärmedurchlaßwiderstand R 3.76 [m2K/W] Wärmedurchgangswiderstand RT

0.27 [W/m2K] Wärmedurchgangskoeffizient U-Wert

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2013-2 Tabelle 3, normale Bauteile (>=100kg/m²):

Einsatzart: Wand gegen offene kalte Räume (Garage, Durchfahrt,usw.) zur Berechnung herangezogenes Flächengewicht kg/m² 3.590 m²K/W R an der ungünstigsten Stelle m²K/W : 1.200 Grenzwert (Mindestwert) für R

die Anforderungen sind nach DIN 4108-2:2013-2 erfüllt

Randbedingungen der Dampfdiffusion

	Warmseite		Kaltseite
Tauperiode: Lufttemperatur relative Feuchte Dauer der Tauperiode	20.0 °C 50.0 % 2160 Stunden		-5.0 °C 80.0 %
Verdunstungsperiode: Dampfdruck Dampfdruck Ausfallstelle Dauer der Verdunstungsperiode	1200 Pa 2160 Stunden	1700 Pa	1200 Pa

das Bauteil wird als Wand berechnet.

Ergebnis der Dampfdiffusionsberechnung

Falluntersuchung nach DIN 4108 ergab: FALL A

Aufbau ist OK, Kein Tauwasserausfall

μ*d an den Schichtgrenzen:

Nr.	Material	DIN	μ1/μ2	μ	μ*d [m]	Summe µ*s
2	Kalkgipsputz Beton normal DIN 1045 Perimeterdämmung 035 Kalkgipsputz	D D	μ1 μ1 μ1 μ1	10 70 50 10	0.150 17.500 6.000 0.150	0.150 17.650 23.650 23.800

LANG INGENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Grenzschicht	Tauperiode Temperatur [°C]	Tauperiode Dampfdruck [Pa]	Verdunstungsperiode Temperatur [°C]	Verdunstungsperiode Dampfdruck [Pa]
Warmseite	20.0	2338	12.0	1404
1	19.1	2216	12.0	1404
1/2	19.0	2197	12.0	1404
2/3	18.2	2091	12.0	1404
3/4	-4.6	416	12.0	1404
4	-4.7	411	12.0	1404
Kaltseite	-5.0	402	12.0	1404

LANG INGENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

25Beton + WD12-035					1.85 m²	U-Wert =	: 0,269 W/m²K
Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
uftübergang Warmseite Rsi 0.13 Kalkgipsputz		1400.0	15.00	0.700	0.021	10	
Beton normal DIN 1045	D	2500.0	250.00	2.100	0.119	70 / 150	
Perimeterdämmung 035		40.0	120.00	0.035	3.429	50	
Kalkgipsputz	D	1400.0	15.00	0.700	0.021	10	eite
uftübergang Kaltseite Rse 0.00							Warmseite
Bauteildicke = 400.00 mm	Flächenge	wicht = 671.	8 kg/m²	R=	= 3.59 m²K/W		* \ \
	_						

Wärmedurchgangsberechnung

Berechnete Daten:

Wärmedurchlaßwiderstand R
Wärmedurchgangswiderstand RT
3.59 [m²K/W]
3.72 [m²K/W]

Wärmedurchgangskoeffizient U-Wert 0.27 [W/m²K]

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2013-2 Tabelle 3, normale Bauteile (>=100kg/m²):

Einsatzart: erdberührende Außenwand beheizter Räume

zur Berechnung herangezogenes Flächengewicht : 671.8 kg/m²
R an der ungünstigsten Stelle : 3.590 m²K/W
Grenzwert (Mindestwert) für R : 1.200 m²K/W

die Anforderungen sind nach DIN 4108-2:2013-2 erfüllt

Randbedingungen der Dampfdiffusion

	Warmseite	Kaltseite
Tauperiode: Lufttemperatur relative Feuchte Dauer der Tauperiode	20.0 °C 50.0 % 8760 Stunden	8.0 °C 80.0 %
Verdunstungsperiode: Dampfdruck Dampfdruck Ausfallstelle Dauer der Verdunstungsperiode	1200 Pa 0 Stunden	1200 Pa 1700 Pa

das Bauteil wird als Wand berechnet.

Ergebnis der Dampfdiffusionsberechnung

Falluntersuchung nach DIN 4108 ergab: FALL A

Aufbau ist OK. Kein Tauwasserausfall

μ*d an den Schichtgrenzen:

Nr.	Material	DIN	μ1/μ2	μ	μ*d [m]	Summe µ*s
1 2 3 4	Kalkgipsputz Beton normal DIN 1045 Perimeterdämmung 035 Kalkgipsputz	D D	μ1 μ1 μ1 μ1	10 70 50 10	0.150 17.500 6.000 0.150	0.150 17.650 23.650 23.800

LANG NINGENIEURS

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Grenzschicht	Tauperiode	Tauperiode	Verdunstungsperiode	Verdunstungsperiode
	Temperatur [°C]	Dampfdruck [Pa]	Temperatur [°C]	Dampfdruck [Pa]
Warmseite 1 1/2 2/3 3/4 4 Kaltseite	20.0 19.6 19.5 19.1 8.1 8.0 8.0	2338 2278 2269 2215 1079 1074 1074	12.0 11.9 11.8 11.7 8.0 8.0 8.0	1404 1391 1389 1377 1076 1074

LANG INGENEUR

Neubau ETW - Teil B

17.Jan 2022 14:02:33

20Sparren + WD20-035				6	58.12 m²	U-Wert =	0.211 W/m²K
Material		Das Bauto Dichte [kg/m³]	eil besitzt 2 S Dicke s [mm]	chichtbereich λ [W/mK]	e R [m²K/W]	Diff Wid.	
Aufbau des Feldbereichs Luftübergang Warmseite Rsi 0.10 F1 Gipskarton DIN 18180 F2 PE-Folie my*s=50m F3 Mineralwolle 035 Luftübergang Kaltseite Rse 0.04	90.0 % D D D	900.0 1100.0 250.0	15.00 0.20 200.00	0.210 0.300 0.035	0.071 0.001 5.714	8 250000 1	Warmseite Kaltseite
Aufbau des Balkenbereichs Luftübergang Warmseite Rsi 0.10 B1 Gipskarton DIN 18180 B2 PE-Folie my*s=50m B3 Holz (Fichte,Kiefer,Tanne) Luftübergang Kaltseite Rse 0.04	10.0 % D D D	900.0 1100.0 600.0	15.00 0.20 200.00	0.210 0.300 0.130	0.071 0.001 1.538	8 250000 40	Warr

U-Wert-Berechnung inhomogener Bauteile nach DIN EN ISO 6946

Bauteildicke Feldanteil Flächengewicht U-Wert Rτ Rτ' 215.20 mm 90.0 % 70.7 kg/m² 0.211 W/m²K 4.75 m²K/W 4.78.	m²K/W 4.71 m²K/\	Ν
---	------------------	---

Wärmedurchgangsberechnung Feldbereich

Berechnete Daten: Wärmedurchlaßwiderstand R Wärmedurchgangswiderstand Rr	5.79 [m²K/W] 5.93 [m²K/W]
Wärmedurchgangskoeffizient U-Wert	0.17 [W/m²K]

die Anforderungen sind nach DIN 4108-2:2013-2 erfüllt

Wärmedurchgangsberechnung Balkenbereich

Berechnete Daten: Wärmedurchlaßwiderstand R Wärmedurchgangswiderstand R⊤	1.61 [m²K/W] 1.75 [m²K/W]		
Wärmedurchgangskoeffizient U-Wert	0.57 [W/m²K]		
	N 4409 3:2042 2 Joiobto Baute	ila /<100ka/r	m ² \•
der Wärmedurchlasswiderstand des Feldbereichs	und der mittlere Wärmeduch	eile (<100kg/r lasswiderstar kg/m²	nd wurden uberp
Überprüfung des Mindestwärmeschutzes nach DI der Wärmedurchlasswiderstand des Feldbereichs zur Berechnung herangezogenes Flächengewicht R an der ungünstigsten Stelle Grenzwert (Mindestwert) für R	und der mittlere Wärmeduch	lasswiderstar	n²): nd wurden überp (Feldbereich)

Randbedingungen der Dampfdiffusion

das Bauteil wird als Dach berechnet.

	Warmseite		Kaltseite
Tauperiode: Lufttemperatur relative Feuchte Dauer der Tauperiode	20.0 °C 50.0 % 2160 Stunden		-5.0 °C 80.0 %
Verdunstungsperiode: Dampfdruck Dampfdruck Ausfallstelle Dauer der Verdunstungsperiode	1200 Pa 2160 Stunden	2000 Pa	1200 Pa

LANG INGENEURS

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Ergebnis der Dampfdiffusionsberechnung (Feldbereich des Bauteils)

Falluntersuchung nach DIN 4108 ergab: FALL A

Aufbau ist OK. Kein Tauwasserausfall

μ*d an den Schichtgrenzen:

Nr. Material	DIN	μ1/μ2	μ	µ*d [m]	Summe μ*s
1 Gipskarton DIN 18180 2 PE-Folie my*s=50m 3 Mineralwolle 035	D	μ1	8	0.120	0.120
	D	μ1	250000	50.000	50.120
	D	μ1	1	0.200	50.320

Temperatur - Dampfsättigungsdruckverlauf an den Schichtgrenzen

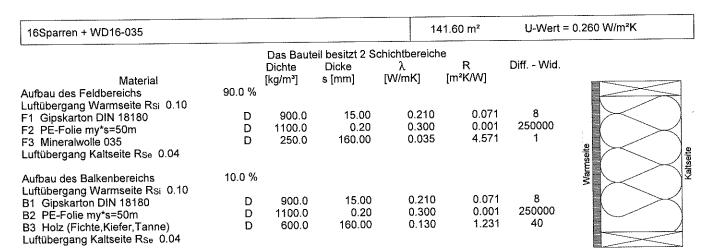
Grenzschicht	Tauperiode	Tauperiode	Verdunstungsperiode	Verdunstungsperiode
	Temperatur [°C]	Dampfdruck [Pa]	Temperatur [°C]	Dampfdruck [Pa]
Warmseite 1 1/2 2/3 3 Kaltseite	20.0	2338	12.0	1404
	19.6	2278	12.1	1416
	19.3	2236	12.2	1425
	19.3	2235	12.2	1426
	-4.8	408	20.0	2338
	-5.0	402	12.0	1404

Ergebnis der Dampfdiffusionsberechnung (Balkenbereich des Bauteils)

Falluntersuchung nach DIN 4108 ergab: FALL A

Aufbau ist OK. Kein Tauwasserausfall

µ*d an den Schichtgrenzen:


Nr.	Material	DIN	μ1/μ2	μ	μ*d [m]	Summe μ*s
2	Gipskarton DIN 18180 PE-Folie my*s=50m Holz (Fichte,Kiefer,Tanne)	D D D	μ1 μ1 μ1	8 250000 40	0.120 50.000 8.000	0.120 50.120 58.120

Grenzschicht	Tauperiode	Tauperiode	Verdunstungsperiode	Verdunstungsperiode
	Temperatur [°C]	Dampfdruck [Pa]	Temperatur [°C]	Dampfdruck [Pa]
Warmseite 1 1/2 2/3 3 Kaltseite	20.0	2338	12.0	1404
	18.6	2140	12.5	1448
	17.6	2007	12.8	1480
	17.5	2006	12.8	1480
	-4.4	422	20.0	2338
	-5.0	402	12.0	1404

Neubau ETW - Teil B

17.Jan 2022 14:02:33

NG () INGENIEURE

U-Wert-Berechnung inhomogener Bauteile nach DIN EN ISO 6946

Bauteildicke	Feidanteil	Flächengewicht	U-Wert	R _T	R⊤'	Rt"
175.20 mm	90.0 %	59.3 kg/m²	0.260 W/m²K	3.85 m²K/W	3.88 m²K/W	3.81 m²K/W

Wärmedurchgangsberechnung Feldbereich

Berechnete Daten: Wärmedurchlaßwiderstand R Wärmedurchgangswiderstand R _T	4.64 [m²K/W] 4.78 [m²K/W]
Wärmedurchgangskoeffizient U-Wert	0.21 [W/m²K]

Wärmedurchgangsberechnung Balkenbereich

Berechnete Daten: Wärmedurchlaßwiderstand R Wärmedurchgangswiderstand R⊤	1.30 [m²K/W] 1.44 [m²K/W]
Wärmedurchgangskoeffizient U-Wert	0.69 [W/m²K]

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2013-2 leichte Bauteile (<100kg/m²): der Wärmedurchlasswiderstand des Feldbereichs und der mittlere Wärmeduchlasswiderstand wurden überprüft 59.3 ka/m² zur Berechnung herangezogenes Flächengewicht m²K/W (Feldbereich) 4.644 R an der ungünstigsten Stelle m²K/W 1.750 Grenzwert (Mindestwert) für R 3.706 m²K/W R gesamte Bauteil (Mittelwert) m²K/W 1.000 Grenzwert (Mindestwert) für das Gesamtbauteil

die Anforderungen sind nach DIN 4108-2:2013-2 erfüllt

Randbedingungen der Dampfdiffusion

	Warmseite		Kaltseite
Tauperiode: Lufttemperatur relative Feuchte Dauer der Tauperiode	20.0 °C 50.0 % 2160 Stunden		-5.0 °C 80.0 %
Verdunstungsperiode: Dampfdruck Dampfdruck Ausfallstelle Dauer der Verdunstungsperiode	1200 Pa 2160 Stunden	2000 Pa	1200 Pa

das Bauteil wird als Dach berechnet.

Telefon: 09194/7350 0 Fax: 09094/735040

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Ergebnis der Dampfdiffusionsberechnung (Feldbereich des Bauteils)

Falluntersuchung nach DIN 4108 ergab: FALL A

Aufbau ist OK. Kein Tauwasserausfall

μ*d an den Schichtgrenzen:

Nr.	Material	DIN	μ1/μ2	μ	μ*d [m]	Summe µ*s
2	Gipskarton DIN 18180 PE-Folie my*s=50m Mineralwolle 035	D D D	μ1 μ1 μ1	8 250000 1	0.120 50.000 0.160	0.120 50.120 50.280

Temperatur - Dampfsättigungsdruckverlauf an den Schichtgrenzen

Grenzschicht	Tauperiode	Tauperiode	Verdunstungsperiode	Verdunstungsperiode
	Temperatur [°C]	Dampfdruck [Pa]	Temperatur [°C]	Dampfdruck [Pa]
Warmseite 1 1/2 2/3 3 Kaltseite	20.0	2338	12.0	1404
	19.5	2264	12.2	1419
	19.1	2212	12.3	1431
	19.1	2211	12.3	1431
	-4.8	409	20.0	2338
	-5.0	402	12.0	1404

Ergebnis der Dampfdiffusionsberechnung (Balkenbereich des Bauteils)

Falluntersuchung nach DIN 4108 ergab: FALL A

Aufbau ist OK. Kein Tauwasserausfall

µ*d an den Schichtgrenzen:

Nr.	Material	DIN	μ1/μ2	μ	μ*d [m]	Summe μ*s
2	Gipskarton DIN 18180	D	μ1	8	0.120	0.120
	PE-Folie my*s=50m	D	μ1	250000	50.000	50.120
	Holz (Fichte,Kiefer,Tanne)	D	μ1	40	6.400	56.520

Grenzschicht	Tauperiode	Tauperiode	Verdunstungsperiode	Verdunstungsperiode
	Temperatur [°C]	Dampfdruck [Pa]	Temperatur [°C]	Dampfdruck [Pa]
Warmseite 1 1/2 2/3 3 Kaltseite	20.0	2338	12.0	1404
	18.3	2099	12.6	1457
	17.0	1942	13.0	1497
	17.0	1941	13.0	1497
	-4.3	426	20.0	2338
	-5.0	402	12.0	1404

Telefon: 09194/7350 0 Fax: 09094/735040

Neubau ETW - Teil B

17.Jan 2022 14:02:33

20Beton-Terrasse+WD15-035	33	3.00 m²	U-Wert =	0.221 W/m²K			
Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
ıftübergang Warmseite Rsi 0.10 Beton normal DIN 1045	D	2400.0	200.00	2.100	0.095	70 / 150	
Bitumendachbahn DIN 52128		1200.0	2.00	0.170		10000 / 80000	
Polystyrolhartschaum 035		0.0	150.00	0.035	4.286	25	
Abdichtung	D	10.0	10.00	50.000	0.000	1	tig / / Vigit
uftübergang Kaltseite Rse 0.04							Warmseite
auteildicke = 362.00 mm	Flächenge	wicht = 482.	5 kg/m²	R=	= 4.39 m²K/V	I	*///>

Wärmedurchgangsberechnung

Berechnete Daten:

4.39 [m2K/W] Wärmedurchlaßwiderstand R 4.53 [m2K/W] Wärmedurchgangswiderstand RT

0.22 [W/m²K] Wärmedurchgangskoeffizient U-Wert

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2013-2 Tabelle 3, normale Bauteile (>=100kg/m²):

Dach/Decke gegen Außenluft Einsatzart:

482.5 kg/m² zur Berechnung herangezogenes Flächengewicht $\bar{m^2}K/W$ R an der ungünstigsten Stelle 4.393 Grenzwert (Mindestwert) für R 1.200 m²K/W

ACHTUNG! Dichteangaben im Schichtaufbau sind unvollständig,

die Anforderungen sind nach DIN 4108-2:2013-2 erfüllt

Randbedingungen der Dampfdiffusion

	Warmseite		Kaltseite
Tauperiode: Lufttemperatur relative Feuchte Dauer der Tauperiode	20.0 °C 50.0 % 2160 Stunden		-5.0 °C 80.0 %
Verdunstungsperiode: Dampfdruck Dampfdruck Ausfallstelle Dauer der Verdunstungsperiode	1200 Pa 2160 Stunden	2000 Pa	1200 Pa

das Bauteil wird als Dach berechnet.

Ergebnis der Dampfdiffusionsberechnung

Falluntersuchung nach DIN 4108 ergab: FALL A

Aufbau ist OK. Kein Tauwasserausfall

u*d an den Schichtgrenzen:

Nr.	Material	DIN	μ1/μ2	μ	μ*d [m]	Summe µ*s
2	Beton normal DIN 1045 Bitumendachbahn DIN 52128 Polystyrolhartschaum 035 Abdichtung	D D	μ1 μ1 μ1 μ1	70 10000 25 1	14.000 20.000 3.750 0.010	14.000 34.000 37.750 37.760

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Grenzschicht	Tauperiode	Tauperiode	Verdunstungsperiode	Verdunstungsperiode
	Temperatur [°C]	Dampfdruck [Pa]	Temperatur [°C]	Dampfdruck [Pa]
Warmseite 1 1/2 2/3 3/4 4 Kaltseite	20.0 19.4 18.9 18.9 -4.8 -4.8	2338 2260 2187 2178 410 410 402	12.0 12.2 12.3 12.4 20.0 20.0	1404 1420 1436 1438 2338 2338 1404

Telefon: 09194/7350 0 Fax: 09094/735040

Neubau ETW - Teil B

17.Jan 2022 14:02:33

20Stb+WD7-035+2-040	12	2.00 m²	U-Wert =	0.352 W/m²K			
Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
uftübergang Warmseite Rsi 0.10 Zementestrich	D	2000.0	60.00	1.400	0.043	15 / 35	
Dampfsperre PE-Folie	_	1100.0	0.20	0.200	0.001	100000	
Trittschalldämmung		50.0	20.00	0.040	0.500	15	
Polystyrolhartschaum 035		0.0	70.00	0.035	2.000	25	
Beton normal DIN 1045 uftübergang Kaltseite Rse 0.10	D	2500.0	200.00	2.100	0.095	70 / 150	Warmse
auteildicke = 350.20 mm	Flächenge	wicht = 621.	2 kg/m²	R=	= 2.64 m²K/W	r	

Wärmedurchgangsberechnung

Berechnete Daten:

2.64 [m2K/W] Wärmedurchlaßwiderstand R 2.84 [m2K/W] Wärmedurchgangswiderstand RT

0.35 [W/m2K] Wärmedurchgangskoeffizient U-Wert

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2013-2 Tabelle 3, normale Bauteile (>=100kg/m²):

Decke gegen geschlossenen unbeheizten Raum, Wärmestrom nach oben kg/m²

621.2 zur Berechnung herangezogenes Flächengewicht

m²K/W R an der ungünstigsten Stelle 2.639 m²K/W 0.900 Grenzwert (Mindestwert) für R

ACHTUNG! Dichteangaben im Schichtaufbau sind unvollständig,

die Anforderungen sind nach DIN 4108-2:2013-2 erfüllt

Randbedingungen der Dampfdiffusion

	Warmseite		Kaltseite
Tauperiode: Lufttemperatur relative Feuchte Dauer der Tauperiode	20.0 °C 50.0 % 2160 Stunden		5.0 °C 80.0 %
Verdunstungsperiode: Dampfdruck Dampfdruck Ausfallstelle Dauer der Verdunstungsperiode	1200 Pa 2160 Stunden	1700 Pa	1200 Pa

das Bauteil wird als Decke berechnet.

Ergebnis der Dampfdiffusionsberechnung

Falluntersuchung nach DIN 4108 ergab: FALL B

(2160h) 0.003 kg/m² Tauwasser in der Tauperiode: 0.060 kg/m² (2160h) mögliche Verdunstungsmenge: 0.000 kg/m² verbleibende Restmenge

Aufbau ist OK. Es verbleibt kein Wasser im Bauteil

22.950[m] (µ*d) 938.2[Pa] an Schichtgrenze 4/5 Ausfallpunkt

Vom Ausfall betroffene Schichten:

Nr.	Material	DIN	μ1/μ2	μ
4	Polystyrolhartschaum 035	D	μ1	25
5	Beton normal DIN 1045		μ2	150

LANG NGENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

μ*d an den Schichtgrenzen:

Nr.	Material	DIN	μ1/μ2	h	μ*d [m]	Summe µ*s
2 3 4	Zementestrich Dampfsperre PE-Folie Trittschalldämmung Polystyrolhartschaum 035 Beton normal DIN 1045	D D	μ1 μ1 μ1 μ1 μ2	15 100000 15 25 150	0.900 20.000 0.300 1.750 30.000	0.900 20.900 21.200 22.950 52.950

Grenzschicht	Tauperiode	Tauperiode	Verdunstungsperiode	Verdunstungsperiode
	Temperatur [°C]	Dampfdruck [Pa]	Temperatur [°C]	Dampfdruck [Pa]
Warmseite 1 1/2 2/3 3/4 4/5 5	20.0 19.5 19.2 19.2 16.6 6.0 5.5	2338 2263 2231 2231 1890 938 906	12.0 12.0 12.0 12.0 12.0 12.0	1404 1404 1404 1404 1404 1404 1404

Lang Ingenieure GmbH + Co. KG Pretzfelder Straße 24 91320 Ebermannstadt Telefon: 09194/7350 0 Fax: 09094/735040 Pretzfelder Straße 24

ANG DINGENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Dichte Dicke λ R Diff Wid.	30Stb+WD10-040+2-040			89	9.60 m²) m ² U-Wert = 0.299 W		
1 Zementestrich D 2000.0 50.00 1.400 0.036 15 / 35 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	***************************************						Diff Wid.	
1 2 2 2 2 2 2 2 2 2		n	2000.0	50.00	1 400	0.036	15 / 35	
8 Trittschalldämmung 50.0 20.00 0.040 0.500 15 8 Beton normal DIN 1045 D 2500.0 300.00 2.100 0.143 70 / 150 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		Ъ						
Beton normal DIN 1045 D 2500.0 300.00 2.100 0.143 70 / 150 5 Polystyrolhartschaum 040 0.0 100.00 0.040 2.500 35 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					0.040	0.500	15	
5 Polystyrolhartschaum 040 0.0 100.00 0.040 2.500 35 Explored English Res 0.00		D		300.00	2.100	0.143	70 / 150	e l
_uftübergang Kaltseite Rse 0.00			0.0	100.00	0.040	2.500	35	ši /
Bauteildicke = 470.20 mm Flächengewicht = 851.2 kg/m² R = 3.18 m²K/W								war
! <u>/</u> /# \ \ \ \	uteildicke = 470.20 mm Flächengew		vicht = 851.	2 kg/m²	R=	= 3.18 m²K/W	1	

Wärmedurchgangsberechnung

Berechnete Daten: Wärmedurchlaßwiderstand R Wärmedurchgangswiderstand Rr	3.18 [m²K/W] 3.35 [m²K/W]
Wärmedurchgangskoeffizient U-Wert	0.30 [W/m²K]

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2013-2 Tabelle 3, normale Bauteile (>=100kg/m²): Einsatzart: Kellergrundfläche beheizter Räume im Erdreich

kg/m² m²K/W zur Berechnung herangezogenes Flächengewicht R an der ungünstigsten Stelle Grenzwert (Mindestwert) für R ACHTUNG! Dichteangaben im Schichtaufbau sind unvollständig, 3.180 m²K/W ; 0.900

die Anforderungen sind nach DIN 4108-2:2013-2 erfüllt

Telefon: 09194/7350 0 Fax: 09094/735040

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Material Luftübergang Warmseite Rsi 0.17 1 Zementestrich 2 Dampfsperre PE-Folie	D	Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
1 Zementestrich 2 Dampfsperre PE-Folie	D	2000.0					Y// B -2Y /
2 Dampfsperre PE-Folie	_		60.00	1.400	0.043	15 / 35	
		1100.0	0.20	0.200	0.001	100000	
3 Trittschalldämmung		50.0	20.00	0.040	0.500	15	
4 Polystyrolhartschaum 035		0.0	70.00	0.035	2.000	25	m seite
5 Beton normal DIN 1045	D	2500.0	200.00	2.100	0.095	70 / 150	
Luftübergang Kaltseite Rse 0.17							N N N N N N N N N N N N N N N N N N N
Bauteildicke = 350.20 mm Fläc	teildicke = 350.20 mm Flächengewic		2 kg/m²	R=	= 2.64 m²K/W		

Wärmedurchgangsberechnung

Berechnete Daten:

2.64 [m2K/W] Wärmedurchlaßwiderstand R 2.98 [m²K/W] Wärmedurchgangswiderstand RT

Wärmedurchgangskoeffizient U-Wert 0.34 [W/m2K]

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2013-2 Tabelle 3, normale Bauteile (>=100kg/m²):

Decke über nicht beheizten Kellerraum ohne Perimeterdämmung Einsatzart: 621.2 kg/m² zur Berechnung herangezogenes Flächengewicht

m²K/W R an der ungünstigsten Stelle 2.639 Grenzwert (Mindestwert) für R m2K/W 0.900

ACHTUNG! Dichteangaben im Schichtaufbau sind unvollständig,

die Anforderungen sind nach DIN 4108-2:2013-2 erfüllt

Randbedingungen der Dampfdiffusion

	Warmseite		Kaltseite
Tauperiode: Lufttemperatur relative Feuchte Dauer der Tauperiode	20.0 °C 50.0 % 2160 Stunden		12.0 °C 80.0 %
Verdunstungsperiode: Dampfdruck Dampfdruck Ausfallstelle Dauer der Verdunstungsperiode	1200 Pa 2160 Stunden	1700 Pa	1200 Pa

das Bauteil wird als Decke berechnet.

Ergebnis der Dampfdiffusionsberechnung

Falluntersuchung nach DIN 4108 ergab: FALL A

Aufbau ist OK. Kein Tauwasserausfall

µ*d an den Schichtgrenzen:

Nr.	Material	DIN	μ1/μ2	Н	μ*d [m]	Summe µ*s
3 4	Zementestrich Dampfsperre PE-Folie Trittschalldämmung Polystyrolhartschaum 035 Beton normal DIN 1045	D D	μ1 μ1 μ1 μ1 μ1	15 100000 15 25 70	0.900 20.000 0.300 1.750 14.000	0.900 20.900 21.200 22.950 36.950

LANG INGENIEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Grenzschicht	Tauperiode Temperatur [°C]	Tauperiode Dampfdruck [Pa]	Verdunstungsperiode Temperatur [°C]	Verdunstungsperiode Dampfdruck [Pa]
Warmseite	20.0	2338	12.0	1404
1	19.5	2273	12.0	1404
1/2	19.4	2257	12.0	1404
2/3	19.4	2256	12.0	1404
3/4	18.1	2075	12.0	1404
4/5	12.7	1471	12.0	1404
7/0	12.5	1447	12.0	1404
Kaltseite	12.0	1404	12.0	1404

LANG INGENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

20Stb+WD10-035+7-035+2-040			54	4.00 m²	U-Wert = 0.171 W/m²K		
Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 0.17 1 Zementestrich 2 Dampfsperre PE-Folie 3 Trittschalldämmung 4 Polystyrolhartschaum 035 5 Beton normal DIN 1045 6 Dämmung Luftübergang Kaltseite Rse 0.17	D D	2000.0 1100.0 50.0 0.0 2500.0 30.0	60.00 0.20 20.00 70.00 200.00 100.00	1.400 0.200 0.040 0.035 2.100 0.035	0.043 0.001 0.500 2.000 0.095 2.857	15 / 35 100000 15 25 70 / 150 30 / 100	Warmseite
Bauteildicke = 450.20 mm	Flächenge	Flächengewicht = 624.2 kg/m²		$R = 5.50 \text{ m}^2\text{K/W}$		V	

Wärmedurchgangsberechnung

Berechnete Daten:

Wärmedurchlaßwiderstand R 5.50 [m²K/W] Wärmedurchgangswiderstand R⊤ 5.84 [m²K/W]

Wärmedurchgangskoeffizient U-Wert 0.17 [W/m²K]

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2013-2 Tabelle 3, normale Bauteile (>=100kg/m²):

Einsatzart: Decke über nicht beheizten Kellerraum ohne Perimeterdämmung zur Berechnung herangezogenes Flächengewicht : 624.2 kg/m² R an der ungünstigsten Stelle : 5.496 m²K/W Grenzwert (Mindestwert) für R : 0.900 m²K/W

ACHTUNG! Dichteangaben im Schichtaufbau sind unvollständig,

die Anforderungen sind nach DIN 4108-2:2013-2 erfüllt

Randbedingungen der Dampfdiffusion

	Warmseite		Kaltseite
Tauperiode: Lufttemperatur relative Feuchte Dauer der Tauperiode	20.0 °C 50.0 % 2160 Stunden		12.0 °C 80.0 %
Verdunstungsperiode: Dampfdruck Dampfdruck Ausfallstelle Dauer der Verdunstungsperiode	1200 Pa 2160 Stunden	1700 Pa	1200 Pa

das Bauteil wird als Decke berechnet.

Ergebnis der Dampfdiffusionsberechnung

Falluntersuchung nach DIN 4108 ergab: FALL A

Aufbau ist OK. Kein Tauwasserausfall

µ*d an den Schichtgrenzen:

Nr.	Material	DIN	μ1/μ2	μ	μ*d [m]	Summe µ*s
1 2 3 4 5 6	Zementestrich Dampfsperre PE-Folie Trittschalldämmung Polystyrolhartschaum 035 Beton normal DIN 1045 Dämmung	D D	μ1 μ1 μ1 μ1 μ1	15 100000 15 25 70 30	0.900 20.000 0.300 1.750 14.000 3.000	0.900 20.900 21.200 22.950 36.950 39.950

LANG INGENIEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Grenzschicht	Tauperiode Temperatur [°C]	Tauperiode Dampfdruck [Pa]	Verdunstungsperiode Temperatur [°C]	Verdunstungsperiode Dampfdruck [Pa]
Warmseite	20.0	2338	12.0	1404
1	19.8	2305	12.0	1404
1/2	19.7	2296	12.0	1404
2/3	19.7	2296	12.0	1404
3/4	19.0	2201	12.0	1404
4/5	16.3	1852	12.0	1404
5/6	16.1	1836	12.0	1404
6	12.2	1425	12.0	1404
Kaltseite	12.0	1404	12.0	1404

Telefon: 09194/7350 0 Fax: 09094/735040

Neubau ETW - Teil B

17.Jan 2022 14:02:33

20Stb+TOP10-035+7-035+2-040				24	42.50 m²	U-Wert = 0.175 W/m²K	
Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite Rsi 0.17 1 Zementestrich 2 Dampfsperre PE-Folie 3 Trittschalldämmung 4 Polystyrolhartschaum 035 5 Beton normal DIN 1045 6 TopDec DP3 WLG035	D D	2000.0 1100.0 50.0 0.0 2500.0 30.0	60.00 0.20 20.00 70.00 200.00 100.00	1.400 0.200 0.040 0.035 2.100 0.035	0.043 0.001 0.500 2.000 0.095 2.857	15 / 35 100000 15 25 70 / 150 30 / 100	lamseite
Luftübergang Kaltseite Rse 0.04 Bauteildicke = 450.20 mm	Flächenge	Flächengewicht = 624.2 kg/m²		R = 5.50 m²K/W		*	

Wärmedurchgangsberechnung

Berechnete Daten:

5.50 [m2K/W] Wärmedurchlaßwiderstand R 5.71 [m²K/W] Wärmedurchgangswiderstand RT

0.18 [W/m2K] Wärmedurchgangskoeffizient U-Wert

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2013-2 Tabelle 3, normale Bauteile (>=100kg/m²):

Decke gegen Außenluft unten Einsatzart:

kg/m² 624.2 zur Berechnung herangezogenes Flächengewicht m²K/W 5.496 R an der ungünstigsten Stelle Grenzwert (Mindestwert) für R : 1.750 m²K/W

ACHTUNG! Dichteangaben im Schichtaufbau sind unvollständig,

die Anforderungen sind nach DIN 4108-2:2013-2 erfüllt

Randbedingungen der Dampfdiffusion

	Warmseite		Kaltseite	
Tauperiode: Lufttemperatur relative Feuchte Dauer der Tauperiode	20.0 °C 50.0 % 2160 Stunden		-5.0 °C 80.0 %	
Verdunstungsperiode: Dampfdruck Dampfdruck Ausfallstelle Dauer der Verdunstungsperiode	1200 Pa 2160 Stunden	1700 Pa	1200 Pa	

das Bauteil wird als Decke berechnet.

Ergebnis der Dampfdiffusionsberechnung

Falluntersuchung nach DIN 4108 ergab: FALL A

Aufbau ist OK. Kein Tauwasserausfall

u*d an den Schichtgrenzen:

Nr.	Material	DIN	μ1/μ2	μ	μ*d [m]	Summe µ*s
1 Zementestrich 2 Dampfsperre 3 Trittschalldämt 4 Polystyrolharts 5 Beton normal I 6 TopDec DP3 V	PE-Folie nung chaum 035 DIN 1045	D D	µ1 µ1 µ1 µ1 µ1 µ1	15 100000 15 25 70 30	0.900 20.000 0.300 1.750 14.000 3.000	0.900 20.900 21.200 22.950 36.950 39.950

LANG INGENEURE

Neubau ETW - Teil B

17.Jan 2022 14:02:33

Grenzschicht	Tauperiode Temperatur [°C]	Tauperiode Dampfdruck [Pa]	Verdunstungsperiode Temperatur [°C]	Verdunstungsperiode Dampfdruck [Pa]
Warmseite	20.0	2338	12.0	1404
1	19.3	2233	12.0	1404
1/2	19.1	2207	12.0	1404
2/3	19.1	2206	12.0	1404
3/4	16.9	1923	12.0	1404
4/5	8.1	1082	12.0	1404
5/6	7.7	1052	12.0	1404
6	-4.8	408	12.0	1404
Kaltseite	-5.0	402	12.0	1404